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ABSTRACT
Due to the high-speed motion blur and low dynamic range,
conventional frame-based cameras have encountered an im-
portant challenge in object detection, especially in au-
tonomous driving. Event-based cameras, by taking the ad-
vantages of high temporal resolution and high dynamic range,
have brought a new perspective to address the challenge. Mo-
tivated by this fact, this paper proposes a joint framework
combining event-based and frame-based vision for vehicle
detection. Specially, two separate event-based and frame-
based streams are incorporated into a convolutional neural
network (CNN). Besides, to accommodate the asynchronous
events from event-based cameras, a convolutional spiking
neural network (SNN) is utilized to generate visual attention
maps so that two streams can be synchronized. Moreover,
Dempster-Shafer theory is introduced to merge two outputs
from CNN in a joint decision model. The experimental results
show that the proposed approach outperforms the state-of-the-
art methods only using frame-based information, especially in
fast motion and challenging illumination conditions.

Index Terms— Event-based Vision, Neuromorphic Cam-
eras, Convolutional Neural Networks, Spiking Neural Net-
works, Dempster-Shafer Theory

1. INTRODUCTION

Autonomous driving systems have been widely researched in
recent years, and it will be increasingly adopted by the general
public in future [1, 2]. At present, vision cameras, along with
radar, LiDAR, ultrasound, form the backbone of autonomous
driving systems [3], and can obtain high spatial resolution and
adequate videos for machine vision models [4, 5]. In fact, vi-
sion sensors have played a key role to understand the real driv-
ing scenes, and accurately and promptly detecting dangerous
vehicles in vision-based intelligent systems is extremely im-
portant for preventing traffic accidents.

Previously, much research has been done focusing on ve-
hicle detection [4, 6] using frame-based cameras, namely
active-pixel sensors (APS). The earliest methods to achieve
real-time detection are mainly cascade detection based on lo-
cal features. After that, object detection systems have been
enhanced significantly by deep neural networks such as Fast
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Fig. 1. Combining event-based and frame-based vision for
vehicle detection.

R-CNN [7] and Faster R-CNN [8]. Furthermore, end-to-
end object detection models which include SSD [9] and YO-
LOs [10, 11] have appeared. However, those frame-based
methods can achieve a satisfactory performance only under
special conditions, including slow motion and proper illu-
mination. Actually, vehicle detection is still challenging for
frame-based cameras due to the complicated road conditions
with large illumination variations, especially in over-exposed
and insufficient light scenes. In addition, frames suffer from
motion blur in high-speed movement so that subsequent algo-
rithms have failed to capture object.

In order to appreciate how biological approaches and neu-
romorphic engineering techniques could be beneficial for ad-
vancing artificial vision [12], it is inspiring to look at some
shortcomings of frame-based cameras. Recently, event-based
cameras, namely neuromorphic cameras, such as dynamic vi-
sion sensor (DVS) [13], ATIS [14] and DAVIS [15], are bio-
inspired vision sensors that, in contrast to frame-based cam-
eras, work in a completely different way: acquiring a stream
of asynchronous events for independent pixels, instead of pro-
viding a sequence of frame-based images at a fixed rate, as
shown in Fig.1. Event-based cameras have some key advan-
tages over frame-based cameras: high temporal resolution
(µs), high dynamic range (HDR) and low power consump-
tion due to convey sparse events with little redundancy. In
addition, events are outputted only when intensity changes so
that event-based cameras are natural object moving detectors
and have a flaw with weak texture in spatial structure. Indeed,
event-based cameras are gradually applied to computer vision
tasks [16, 17, 18] related to motion estimation.

Aiming at the shortages of frame-based cameras, some
researchers have focused on object detection [17, 19, 20, 21]



based on event-based cameras. Mesa et al. [17] proposed an
event-driven stereo object detection and tracking algorithm
which can solve high-speed movement object occlusion. Li
et al. [19] introduced a recursive adaptive temporal pooling
method to extract motion invariant features for object detec-
tion. Anton et al. [20] presented a multiple moving object de-
tection approach in challenging conditions with fast motion or
lighting variations. Moreover, Chen [21] used pseudo-labels
for supervised learning on DVS data to object detection un-
der ego-motion. However, those methods utilized only event-
based streams without using frame-based cameras. In fact,
event-based cameras can be the principal information to aux-
iliary frame-based object detection [22, 23]. In other words,
combining event-based and frame-based vision can further
improve detection performance.

Inspired by the pros and cons of previous works, this
paper proposes a joint detection framework (JDF) based on
DAVIS, which outputs both conventional frames and event
streams. As a matter of fact, the goal of this work is
not to develop a state-of-the-art detector [8, 9, 10, 11]. In
contrast, we aim at overcoming the following challenges:
1) How to take advantages of event-based and frame-based
streams; 2) Sparse and asynchronous events are well applied
to computer vision algorithms, especially exploiting effec-
tive spatial-temporal features from event streams. As a re-
sult, two separate streams are integrated into convolutional
neural network (CNN). Besides, to accommodate the asyn-
chronous events from event-based cameras, a convolutional
spiking neural network (SNN) is utilized to generate visual at-
tention maps so that two streams can be synchronized. More-
over, Dempster-Shafer mechanism [24] is introduced in joint
decision model, and it achieves impressive performance on
DDD17 [25] dataset, especially in fast motion and challeng-
ing illumination conditions.

The main contributions are summarized as follows: 1)
We introduce Dempster-Shafer theory to the proposed JDF
by combining event-based and frame-based vision; 2) We
present a convolutional SNN to generate visual attention maps
so that it builds a bridge linking asynchronous events to deep
learning algorithms. Furthermore, we show that it is pos-
sible to utilize transfer learning from pretrained models on
detection tasks; 3) We provide a labeled and synchronized
dataset † including frames and event streams, and the experi-
ments have validated the effectiveness of the proposed frame-
work, in which JDF outperforms the state-of-the-art methods
on the basis of frame-based cameras.

2. OUR APPROACH

In this section, we first explain spatial-temporal events from
event-based cameras and describe the basic concepts in the
convolutional SNN. Then, we present the components in the

†https://pkuml.org/resources/pku-ddd17-car.html

(a) Event stream (b) The distance of spike trains

Fig. 2. Measuring spike train distance from event streams.

proposed JDF. Finally, we introduce Dempster-Shafer theory
applied in joint decision model.

2.1. Spatial-Temporal Events

Given an event-based camera with a resolution ofW×H , as is
shown in Fig.2(a), a stream of events ε can be mathematically
defined as:

ε = {ei}Ii=1 , with ei = [xi, yi, ti, pi]
T (1)

where ei is the ith event, namely spike, and it includes times-
tamp (ti), event location ([xi,yi]∈W×H), polarity (pi), with
pi∈{1,−1} representing ON and OFF events respectively.

In fact, there is merit to exploring spatial-temporal char-
acteristics from event-based cameras to serve motion estima-
tion. Since event streams are asynchronous and sparse point
process, it imposes important challenges to signal processing
methods. For two spike trains sm, sn∈s(Γ), the inner product
[26] is introduced to measure distance in the Hilbert space as
follows:

F (sm, sn) =

Nm∑
i=1

Nn∑
j=1

κ
(
tmi , t

n
j

)
=

Nm∑
i=1

Nn∑
j=1

e
−

(
tmi − tnj

)2
2σ2 (2)

where kernel κ is the autocorrelation of Gaussian smooth-
ing function h(t) = exp(−t2/2σ2), with events firing times
tmi , t

n
j ∈Γ.

In this work, one pixel can be chosen as the ordinate ori-
gin from event streams, and the surrounding pixels make up
spike trains in Fig.2(a). The distance of spike trains for three
selected pixels are shown in Fig.2(b), it illustrates that spike
trains from neighboring pixels are more relevant.

2.2. Convolutional Spiking Neural Network

Many works [18, 19, 20, 21] have shown that event streams
can be converted to images [18, 19, 21] or time surfaces [20]
in constant interval, so that it can be applied to computer vi-
sion algorithms. However, those methods using rate-based
strategy have not yet exploit spatial-temporal characteristics.
Inspired by biologically visual receptive fields, a convolu-
tional SNN is utilized to generate visual attention maps based
on firing rates of output neurons.



Fig. 3. The joint detection framework combining event-based and frame-based vision. Specially, convolutional SNN is used
to generate visual attention maps so that two streams can be synchronized. Then, two separate event-based and frame-based
streams are incorporated into network architecture. Finally, Dempster-Shafer theory is introduced in joint decision model.

In network topology, two layers networks are connected
using a 3 × 3 convolutional kernels, as is shown in Fig.3.
The first layer is the input of event streams, and which has
2×W×H neurons. In other words, each pixel includes two
neurons representing ON and OFF ganglion cells in biologi-
cal retina. In addition, the second layers are outputs of visual
attention maps, and which hasW×H neurons to obtain firing
rates of ON or OFF layer, respectively.

In this study, we use the leaky-integrated-and-fire (LIF)
neuron [27] to emulate neuronal dynamics in SNN as follows:

τm
dV

dt
= −V + w ∗ δ (t− ti) (3)

where V is the neuronal membrane potential, w is the synap-
tic weight, and τm is the time constant. Between two spikes,
the membrane potential of LIF is presented as:

Vi = Vi−1e
−
ti − ti−1
τm + w (4)

when Vi reaches the threshold, it fires an spike. Then, Vi is
reseted to zero without again until over the refractory period.

2.3. Joint Detection Framework

The proposed framework is shown in Fig.3, there are two
branches which aim at processing frames and event streams.
Indeed, the one core of this framework is that event streams
are generated visual attention maps based on convolutional
SNN, the details are presented in Section 2.2. Moreover, the
other is that two separate streams are fed into CNN which
leverages transfer learning from pretrained detection models.

It is important that we make great effort to build a bridge
linking event streams to existing detectors [7, 8, 9, 10, 11].
In this sense, we choose YOLOv3 architecture [11] as a fair
benchmark considering the balance of accuracy and complex-
ity. As it has G×G grid, B predicting bounding boxes for
each grid cell, and C class predictions. In this work, the last

fully-connected (FC) layer is adjusted as an G×G×B×(C +
5) tensor.

Finally, two outputs of the last CNN layer are integrated
as detection results based on Dempster-Shafer theory [24],
which obtains synthetic judgment by combing evidences from
probabilities of related hypotheses.

For object detection, the universal set represents various
possible states for bounding boxes, and it is defined as:

Ω = {T,¬T, {T,¬T}} (5)

where T is target hypothesis, ¬T is non-target, and {T,¬T}
is intermediate state.

To obtain dynamic probability assignment, the trained
precision-recall model is utilized to represent prior informa-
tion of detectors. Meanwhile, we introduce a theoretical best
possible detector, as is shown in Fig.4, and it is modeled as:

p̂b = 1− rk (6)

where p̂b is a theoretical limit for best possible detector in
recall r and performance parameters k.

To compute joint probabilities of the hypotheses for out-
put belief scores S1 and S2, the combination rule based on
Dempster-Shafer theory is presented as:

Sf (A) = S1 ⊕ S2 =
1

K

∑
B1∩B2=A

S1 (B1)S2 (B2) (7)

where B1 and B2 are subsets of Ω, and K is normalization
constant measuring the amount of conflict between universal
sets, and it is given by:

K = 1−
∑

B1∩B2 6=∅

S1 (B1)S2 (B2) (8)

After dynamic probability assignment, the issue becomes
how to combine independent sources, in other words, how
to combine bounding boxes and probabilities from two
streams, respectively. The joint probabilities are merged
based on Dempster-Shafer theory, then non-maximum sup-
pression (NMS) [6] is adopted to integrate bounding boxes.



Fig. 4. Dynamic probability assignment.

3. EXPERIMENTS

In this section, detailed experimental settings, performance
scores and representative results can be found as follows.

3.1. Experimental Settings

To verify the effectiveness of our methods, we conduct exper-
iments on DDD17 [25] dataset including frames and event
streams, and which has over 400GB and 12 hours of a
346×260 pixel DAVIS sensor recording driving scenes. In
order to obtain accurate labels for vehicle detection, we pro-
vide a hand-labeled dataset including synchronized frames
and event streams, as shown in Table 1. Moreover, we fine-
tune the pretrained YOLOv3 model on the labeled DDD17
dataset, set 0.5 overlap threshold and 0.5 scores throughout
the experiments. All timing information is on a Tesla K80.

Table 1. Details of the labeled DDD17 dataset.
File(.hdf5) Condition T(s) Label Type

1487339175 day 347 27 test
1487417411 day 2096 419 test
1487419513 day 1976 204 train
1487424147 day 3040 388 train
1487430438 day 3135 343 train
1487433587 night-fall 2335 145 train
1487593224 day 524 40 test
1487594667 day 2985 196 train
1487597945 night-fall 50 16 test
1487598202 day 1882 618 train
1487600962 day 2143 218 test
1487608147 night-fall 1208 348 train
1487609463 night-fall 101 183 test
1487781509 night-fall 127 10 test

To conduct comprehensive evaluation of the proposed
joint detection framework (JDF), we compare JDF with the
state-of-the-art models and two baselines, including:

(1) APS [11]: A frame-based detection method that only
takes APS frames as input.

(2) Rate-based DVS (R-DVS) [21]: The approach that
adopts rate-based methodology to convert event streams into
frames in 10ms interval as input.

Table 2. Effectiveness test on day condition.
Methods Precision Recall AP FPS

R-DVS [21] 0.874 0.212 0.357 9
S-DVS 0.889 0.256 0.414 9

APS [11] 0.889 0.755 0.867 9
S-DVS + APS 0.898 0.783 0.897 9

JDF 0.941 0.806 0.908 9

Table 3. Effectiveness test on night-fall condition.
Methods Precision Recall AP FPS

R-DVS [21] 0.823 0.267 0.382 9
S-DVS 0.868 0.293 0.437 9

APS [11] 0.852 0.574 0.744 9
S-DVS + APS 0.872 0.621 0.761 9

JDF 0.926 0.672 0.833 9

(3) Spike-based DVS (S-DVS): Different from R-DVS,
S-DVS that uses spike-based methodology by Convolutional
SNN to generate visual attention maps.

(4) APS + S-DVS: Two streams of APS and S-DVS are
merged into frames before input the detector.

To compare different approaches, precision, recall and av-
erage precision (AP), frames per second (FPS) are adopted as
evaluation metrics, which are the most widely used metrics in
object detection.

3.2. Effectiveness Test

In this section, we will test JDF on DDD17 dataset and report
the results. We will also explore several experiments to see
why and how JDF works.

Evaluation on day condition. Performances of all ap-
proaches on day condition can found in Table 2. From Table
2, we can see that the proposed JDF achieves impressive per-
formance on day condition in DDD17 dataset. In particular,
JDF outperforms APS, R-DVS, or S-DVS that only using ei-
ther frames or event streams, respectively. Meanwhile, we
can find that the remarkable performance enhancement from
S-DVS + APS to JDF after joint decision model based on
Dempster-Shafer theory. In addition, S-DVS obtains better
performance than R-DVS due to spike-based methodology.
This may be caused by the fact that convolutional SNN to-
wards better representations for event streams than rate-based
methodology.

Evaluation on night-fall condition. By comparing Table
3 and Table 2, we can see that even with night-fall condition
the performance of both S-DVS and R-DVS still maintain sta-
ble. However, APS drops sharply in such a challenging set-
ting. In other words, after incorporating the auxiliary event
streams, the performance of JDF can significantly improve
over APS. Actually, event-based cameras, by taking the ad-
vantages of high temporal and HDR, have brought a new per-
spective to overcome the shortages of frame-based cameras.

Benefit from JDF. Some representative detection results
are illustrated in Fig.5. As is shown in Fig.5, JDF have bet-



Fig. 5. Representative results on DDD17 dataset. (a) Motion blur; (b) Overexposure; (c) Low-light; (d) Normal-light. It is
clear that JDF achieves better performance than other methods on various conditions, especially in fast motion and challenging
illumination scenes.

Table 4. Scalability test for the state-of-the-art methods on DDD17 dataset.

Architectures Precision Recall AP FPS
APS JDF APS JDF APS JDF APS JDF

Faster-RCNN[8] 0.749 0.829 0.863 0.907 0.802 0.866 3 3
SSD [9] 0.849 0.886 0.641 0.664 0.731 0.759 12 12

YOLOv2 [10] 0.714 0.829 0.691 0.832 0.702 0.778 15 15
YOLOv3 [11] (benchmark) 0.928 0.939 0.695 0.762 0.795 0.841 9 9

(a) Day condition (b) Night-fall condition

Fig. 6. Precision-recall curves on DDD17 dataset.

ter detection results than other methods on various conditions.
Moreover, it is clear that APS fails to capture targets in chal-
lenging scenes, including motion blur, overexposure, night-
fall. This is an interesting findings, implying that the usage
of the auxiliary event stream can improve performance, espe-
cially in fast motion and challenging illumination conditions.

Validate the robustness. The curves of precision-recall
models on DDD17 dataset are illustrated in Fig.6(a) and
Fig.6(b), respectively. From these results, we find that the
proposed JDF has not only better robustness than other meth-
ods on day condition but also fits for night-fall condition.

Evaluating time complexity. As shown in Table2 and

Table 3, time complexity analysis among all approaches, in
which the last column, FPS depicts the speed of detectors.
The results agree with that the overall performance of JDF has
significantly improved meanwhile the computational speed is
almost comparable in contrast to other methods.

3.3. Scalability Test

Beyond effectiveness test, we also conduct several experi-
ments to compare JDF and APS on several state-of-the-art
methods [8, 9, 10, 11], as is shown in Table 4. For the fact
that we select YOLOv3 as a fair benchmark considering the
balance of the accuracy and time complexity. Actually, any
detector can be an alternative owning to that our work has im-
plemented a generic interface providing the input for the de-
tector as well as joint decision model. Note that JDF can sig-
nificantly improve performance for the state-of-the-art meth-
ods only using frame-based streams.

Moreover, the goal of this work is not to develop a power-
ful detector. On the contrary, we aim at the challenges in-
cluding how to perform an effective joint detection frame-
work combining two streams and how to build a bridge link-
ing asynchronous events to algorithms.



4. CONCLUSION

In this paper, we propose a joint detection framework (JDF)
combining event streams and frames, which aims to make two
streams benefit from each other based on Dempster-Shafer
theory. As demonstrated by the experimental results on the
DDD17 dataset, our JDF can improve the two streams frame-
work remarkably and outperforms the state-of-the-art meth-
ods only using frame-based cameras, especially in fast motion
and challenging illumination conditions.
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