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ABSTRACT

Conventional frame-based cameras for multimedia computing have
encountered important challenges in high-speed and extreme light
scenarios. However, how to design a novel paradigm for visual per-
ception that overcomes the disadvantages of conventional cameras
still remains an open issue. In this paper, we propose a novel solu-
tion, namely retinomorphic sensing, which integrates fovea-like
and peripheral-like sampling mechanisms to generate asynchro-
nous visual streams using a unified representation as the retina does.
Technically, our encoder incorporates an interaction controller to
switch flexibly between dynamic and static sensing. Then, the de-
coder effectively extracts dynamic events for machine vision and
reconstructs visual textures for human vision. The results show that
our strategy enables it to sense dynamic events and visual textures
meanwhile reduce data redundancy. We further build a prototype
hybrid camera system to verify this strategy on vision tasks such
as image reconstruction and object detection. We believe that this
novel paradigm will provide insight into future multimedia comput-
ing. The code can be available at https://github.com/acmmm2021-
bni-retinomorphic/retinomorphic-sensing.
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1 INTRODUCTION

What will take place in the real-world within the 33 milliseconds af-
ter pressing the shutter? A running car at 140 kph on the expressway
can move over 1 meter, a flying bullet at 1800 kph can go through
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Figure 1: Retinomorphic sensing system, integrating fovea-
like and peripheral-like visual sampling mechanisms as the
retina does, generates asynchronous events using a unified
representation, which can effectively reconstruct static in-
formation (i.e., visual texture) for human vision and extract
effectively dynamic events for machine vision, such as high-
speed motion bullet.

10 meters, and a rushing rocket at 7200 kph can pass up to 20 floors.
However, a conventional RGB camera at 30 FPS will take a photo
with a blurred picture. Take a car for example, a horrible accident
may occur within the short period between two adjacent frames.
Meanwhile, is the existing multimedia computing paradigm [4, 16]
that "Computer Vision = Conventional frames + Computer + Al-
gorithms" suitable for every scenario? However, few people doubt
whether it can be applied to future multimedia computing. In fact,
conventional frames have some limitations in challenging scenarios
(e.g., high-speed, low-light, and over-exposure), resulting in low-
quality imaging for human vision and performance degradation
for machine vision [12, 32]. Therefore, we aim to design a novel
visual perception paradigm for future multimedia to overcome the
limitation of conventional frame-based cameras.

Recently, neuromorphic vision sensors [5, 9, 17, 20], namely sili-
con retinas, imitating biological visual systems, have been gaining
more and more attention in computer vision [26, 31] owning to the
advantages over conventional cameras: high temporal resolution,
high dynamic range, and low power consumption. According to
sampling mechanisms, neuromorphic cameras can be broadly clas-
sified into two types (i.e., event cameras [24] and spike cameras [8]).

Event cameras (e.g., DVS [15], DAVIS [2], and ATIS [23]) in the
former type, mimicking the periphery of the retina, work radically
in a different way from frame-based cameras. Each pixel indepen-
dently responds to intensity changes (i.e., dynamic information)
with a stream of asynchronous events using address event repre-
sentation (AER) [3]. Since asynchronous events are generated only
when light changes in scenarios, event cameras are natural motion
detectors [12] and perfect for motion sensing [14, 22]. However,
only processing DVS events may be hard to reconstruct high-quality
visual texture and obtain high-precision recognition.
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Spike cameras (e.g., octopus retina [6], and Vidar [8, 38]) in the
latter type, namely time-based vision sensors, adopt the fovea-like
sampling model. Each pixel independently generates spikes when
the accumulation of photos reaches a threshold. In other words,
this brings the ability to reconstruct visual textures using spike
frequency or inter-spike interval [41]. An example is Vidar, each
pixel is reset asynchronously, and then spikes at the same sampling
timestamp are readout synchronous using spike plane. It has a
high temporal sampling frequency of 40,000 Hz and is suitable for
high-speed vision tasks. However, this integrating manner is hard
to provide such high temporal dynamic range as the DVS does.
What’s more, another drawback of Vidar is high data redundancy
due to the spike firing with high frequency for static scenes.

Generally speaking, both two types of neuromorphic cameras
have difficulties and limitations in encoding light intensity with
both dynamic and static information output. Actually, processing
in peripheral and foveal vision is not independent, but is more
directly connected than previously thought [29, 30, 33]. In other
words, the retina is combined with the fovea and the periphery to
sense real-world scenarios. It motivates us to ask: Can we design a
neuromorphic visual sensing system that not only follows the functions
of the periphery and fovea of the retina to obtain effectively dynamic
and texture information, but also uses a unified representation for two
streams towards machine vision and human vision?

To this end, we put forward a novel paradigm for future multime-
dia, namely retinomorphic sensing, which integrates fovea-like and
peripheral-like visual sampling mechanisms to generate asynchro-
nous streams using a unified representation (i.e., AER), as illustrated
in Fig. 1. This visual sensing system can reconstruct high-quality
textures for human vision and extract dynamic information for
machine vision, which includes retinomorphic encoder, dynamic
interacting controller, and retinomorphic decoder. In fact, the goal
of this work is not to design a simulator that models the existing re-
alistic neuromorphic cameras (e.g., DVS or Vidar). On the contrary,
we aim at overcoming the following challenges: (i) How to design
a unified representation to satisfy the machine vision and human
vision; (i) How to dynamically control and switch flexibly between
the two modes (i.e., fovea-like and peripheral-like sampling).

In summary, the main contributions are summarized as follows:

e We propose a novel concept of retinomorphic sensing, which
overcomes the limitations of conventional frame-based sam-
pling, brings a new paradigm for future multimedia and takes
both machine vision and human vision into account.

e We design a dynamical interacting controller using recurrent
neural networks, which integrates fovea-like and peripheral-
like sampling mechanisms to generate asynchronous streams
using a unified representation as the retina does.

e We build a prototype hybrid camera system to verify this
strategy on tasks (e.g, image reconstruction and object de-
tection), aiming to solve the disadvantages of conventional
cameras, especially in extreme challenging scenarios.

To the best of our knowledge, this is the first work to explore
such a visual sensing system to integrate fovea-like and peripheral-
like sampling as the retina does. We believe this prototype will
provide insight into developing the next-generation neuromorphic
vision sensor for future multimedia computing.
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e

Figure 2: Visualization representation for the existing event
cameras (i.e., DVS [15], DAVIS [2], ATIS [23], and Vidar [8])
and our visual sensing system. Note that, our work can effec-
tively sense both dynamic events and visual textures using a
unified representation.

Table 1: Attribution analysis for neuromorphic cameras.

Types DVS [15] Vidar [8] ours
Dynamic events v v
Visual textures v v

Data (Mbps) 1046.9 5310.9 3497.4

2 RELATED WORKS

This section reviews the related works, which mainly focus on the
limitations of frame-based sampling and the existing neuromorphic
visual sampling.

Frame-Based Sampling. Conventional cameras have achieved
great success for computational photography and computer vision
under some conditions [19, 21, 34, 37], but this sampling manner,
capturing visual scenes at the fixed frame-rate, has presented sev-
eral limitations in challenging scenarios (e.g., high-speed, low-light,
and over-exposure), resulting in unusable frames and performance
degradation for vision tasks. Although some works have designed
new types of high-speed cameras [7, 39], the large data size of which
brings the difficulty for real-time transmission and storage [28]. Be-
sides, too many frame-based enhanced algorithms have attempted
to improve the imaging quality (e.g., de-blurring [10, 13] and HDR
imaging [11, 40]) for human vision, but the posting-processing
enhancement is hard to solve fundamentally the bottlenecks of
conventional frame-based sampling paradigm.

Neuromorphic Visual Sampling. Recently, two types of neuro-
morphic vision sensors (i.e., event cameras and spike cameras) have
emerged. Event cameras (e.g., DVS [15], DAVIS [2], and ATIS [23])
independently respond to intensity changes (i.e., dynamic infor-
mation) with asynchronous events, thus they may be hard to re-
construct high-quality visual texture and obtain high-precision
recognition. To address the shortcoming, several cameras have
been developed to output dynamic and static information. For ex-
ample, DAVIS integrates a traditional active pixel sensor (APS) in
the same pixel with DVS. Although APS frames can be provided at a
pre-fixed rate, its readout is limited to dynamic range and temporal
resolution like a standard camera, and two independent signals
may not match for fast-moving objects. Besides, ATIS combines
DVS and a conditional exposure measurement circuit triggered by a
light change detection. The intensity for one pixel needs to transmit
two events coding the temporal interval. Nevertheless, this way
brings the disadvantage that only dynamic pixels provide their new
intensity values rather than global information. Also, the temporal
interval between two events may be long in low light scenes and
the intensity measurement process can be interrupted by a new
event. Spike cameras (e.g., octopus retina [6], and Vidar [8, 38])
encode the light intensity into spikes when the accumulation of
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Figure 3: The pipeline of the proposed retinomorhic sensing framework. Initially, we design two sensing modules using
peripheral-like sampling and fovea-like sampling mechanisms, respectively. Then, the interaction mechanism, using the
recurrent neural network, can switch flexibly between two sensing modules to output both intensity events for human vision

and dynamic events for machine vision.

photos reaches the presetting threshold. Although this integrating
manner brings the ability to reconstruct visual textures, it is hard
to provide high temporal resolution dynamic events for machine
vision as the DVS does.

Therefore, this work will design a novel visual sampling manner
to output both dynamic events for machine vision and texture infor-
mation for human vision, which aims at overcoming the limitations
of conventional frame-based sampling.

3 PROBLEM STATEMENT

In this section, we will summarize some shortages of the existing
neuromorphic visual sampling manners by analyzing visualization
results and data statistics.

Visualization Representation. As shown in Fig. 2, we compare
our visual sensing system with other sampling manners in the ex-
isting neuromorphic cameras (i.e., DVS [15], DAVIS [2], ATIS [23],
and Vidar [8]) from a visualization representation perspective. Ap-
parently, DVS produces only dynamic events without static infor-
mation (i.e., visual textures). Although DAVIS outputs visual texture
via incorporating the APS, it exists two shortages that APS frames
result in motion blurring and two independent signals fail to match
for high-speed scenarios. Unfortunately, ATIS only provides local
visual textures in high dynamic areas rather than global informa-
tion. Vidar can reconstruct high-quality texture without providing
high-speed dynamic events as the DVS does. On the contrary, our
visual sensing system can sense both dynamic events for machine
vision and texture information for human vision.

Data Statistics. We convert a short video into asynchronous
streams using the mechanisms of DVS, Vidar [8] and our simulator,
and we further make attribution analysis for our visual sensing
system and two types of neuromorphic cameras in Table 1. We can
see that Vidar provides visual textures without sensing high-speed
dynamic events as the DVS does. Besides, another drawback of
Vidar is high data redundancy due to the spike firing with high
temporal sampling frequency for static scenes. Notably, our simu-
lator can generate not only dynamic events for machine vision as
DVS does, but also obtain better visual texture than Vidar (details
in Section 5.2) for human vision within low data redundancy.

In this work, we propose a new solution, integrating fovea-like
and peripheral-like visual sampling, which can sense both dynamic
events and visual textures using a unified representation meanwhile
reduce data redundancy.

4 METHODOLOGY

This section will first start with a brief overview of our framework.
Then, we elaborate on the details of how to encode dynamic events
and intensity events using a unified representation. Finally, we
present the decoding strategy to obtain dynamic information and
reconstruct visual texture from asynchronous events.

4.1 Framework Overview

Our goal is to convert continuous light intensity L(up, t,) into asyn-
chronous events using a unified representation (i.e., AER). Generally,
an event e, can be represented as a tuple (xp, yn, tn, pn), which is
generated from one pixel u, = (x5, yn] at the sampling timestamp
tn. As shown in Fig. 3, our retinomorphic sensing framework in-
cludes three parts: fovea-like sampling, peripheral-like sampling,
and interaction mechanism. Specifically, our encoder senses the
lightness and generates events using peripheral-like sampling and
fovea-like sampling mechanisms, respectively. Then, the interaction
mechanism using the recurrent neural networks, can switch flexibly
between two sensing modules to output asynchronous events. After
that, the corresponding decoding framework can obtain dynamic
events for machine vision and reconstruct intensity information
(i.e., visual texture) for human vision.

4.2 Retinomorphic Encoding Framework

For fovea-like sampling part, each pixel outputs an intensity event
(Xn, Yn, tn, qn) once the accumulate of the light intensity L(up, t,)
reaches a presetting threshold 6;. Intuitively, the brighter the illu-
minance, the higher frequency the event generating, and it can be
depicted as follows:

/L(u,,, tn)dt = 0;, (1)

where the small integrating window dt (i.e., At) may result in an
ultra high sampling frequency. At each sampling timestamp, the



attribute p, € {1,0} of an event denotes bright or dark scenario,
respectively. There are two integrators of each pixel and the other
integrates the value of Ly,qx — L(up, t,), and it will first reach the
threshold under dark scenario.

For peripheral-like sampling part, each pixel independently re-
sponds to changes in the illuminance L(uy, t;). A dynamic event
en can be represented as a tuple (xn, yn, tn, pn), which is generated
from one pixel u, = [xn,yn] at the time ¢, when the intensity
change reaches the threshold 6, and it can be described as:

AlnL=|InL(up, tn) — InL(up, tn, — Aty)| = 04, (2)

where the polarity p, € {1,0} refers to ON or OFF event respec-
tively, which represents the increasing or decreasing change in the
brightness, and Aty is the time since the last event at a pixel uy,.
For interaction mechanism, each pixel maintains a cell unit of the
recurrent neural network for the record of the past events. If a new
event (dynamic or intensity) with time t, reaches the interaction
controller, the recurrent neural network will take a vector (i.e., its
time and type) as input X, and update the state of the cell by:

Cp = tanh(W.[Xn, Cn1]), 3)

where W, is the preset parameters, and Cp,—1 is the last status that
the network maintains.
The update gate control Gy, for this event can be represented by:

w = sigmoid(Wy [Xpn, Cn-11), 4

where W, is the pre-setting parameters.
Thus, we can compute new cell status of the recurrent neural
network by:

anGu*én"'(l_Gu)*cn—la (5)

where Cy, is the new cell status and used for the next event. We let
the cell unit also represent the hidden state. The neural network
outputs the current event and resets the accumulators of fovea-like
sampling part if Gy, is no less than 0.5.

For the spatio-temporal windows I, the output of asynchronous
events S = {(un, tn, pn) | un, tn € Ts,n =1,.., N} generated from
our retinomorphic encoder can be formulated as:

N
$=|J{pnd (x =2y —yn t ~tn)}, (©)
n=1
where N is the number of events in the spatio-temporal windows
Ty, and 6 () refers to the Dirac delta function.

4.3 Retinomorphic Decoding Framework

Retinomorphic decoding framework is to obtain dynamic events
Sq and visual textures (i.e., light intensities L) from asynchronous
events after the encoder. Specifically, event sequence for one pixel
is firstly regarded as the basic processing unit, and we decode each
pixel asynchronously in parallel. Then, each event in a sequence
can be distinguished as a dynamic event or intensity event using
their symbols. Finally, dynamic events are natural moving flows to
serve for machine vision, and visual texture can be reconstructed
towards high-quality imaging for human vision.

For intensity events, visual texture can be reconstructed using
the inter-event interval between two events because light inten-
sity L(up, tp) is converted into event sequence under fovea-like

Resolution: 400x250
Sampling: 200,00 Hz spike plane
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(a) Experimental setup

(b) Calibrated views

Figure 4: A hybrid camera system combines DVS and Vidar.
(a) A beam splitter is placed in front of two cameras with 50%
splitting. (b) Examples of the shared view, the left in each
image is the visual texture for Vidar, and the right is event
image.

Dynamic Visual Dynamic information
Scene . . X
information texture + Visual texture
-l
"
L1+ il
S

e
..

-' I 3
P

Figure 5: Representative results in high-speed moving sce-
narios (i.e., flying bullet, bird flapping wings quickly, flying
cranberry, and a shotgun taking aim at the moving object).
Our framework converts videos into asynchronous events
including dynamic and static information. For better visu-
alization, we map dynamic events into event images in the
second column, and intensity events are reconstructed visual
textures in the third column. Besides, dynamic events and
visual textures are merged into frames in the last column.

sampling. Thus, light intensity for one pixel can be estimated as:
0;
3 N = 0
L(un,ty) = {Iin—tnl Pn

i e
max = =g, Pn=1

(7)

where t, and t,—1 are the timestamps of two adjacent intensity
events, and the p, € {1,0} corresponds to the intensity estimation
under bright or dark light scenario. Specially, this equation also
works when the first event is a dynamic event.

For dynamic events, we directly collect each dynamic event into
spatio-temporal point sets for machine vision. Besides, we also push
each dynamic event into a stack {{t1, p1), {t2, p2) ---» {tn—1, Pn—1)}
and wait for a new intensity event to compute light intensity. The
first dynamic event at the top of the stack can use the light in-
tensity L(up, t,) from the adjacent intensity event. After that, the
corresponding dynamic events at middle or bottom of the stack can
utilize the polarity p, and the threshold 6; to calculate the light
intensity. If we have known L (uy, tp—1) of the top of stack S, the
L (up, th—2) of the second top element can be computed as follows:

L (up, tn—l) + eds Pn-1=0

, 8)
L(un,tn-1) =04, pn-1=1

L (uns tn—Z) = {
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Figure 6: Representative image reconstruction results in four high-speed moving scenarios. ATIS of the second column can
restore intensity information only for dynamic areas rather than global textures. DAVIS of the third column usually mismatches
two streams and brings motion blur for conventional frames. Vidar of the fourth column may result in low-quality imaging in
the low sampling frequency. On the contrary, our framework of the last column has better performance on reconstructing the

scene and restoring detailed textures.

where L(upn, th—1) and L(up, th—2) are the light intensities of the
top and the second element of the stack, respectively.

To restore the light intensity at any time between ¢; and t,. we
adopt a linear interpolation strategy as:

L (un,t) = aL (upn, tiy1) + (1 — a)L (up, t;), )]

where a = (¢t — t;)/(ti+1 — ti), and t; < t < t;41. For example, we
record the light intensity in the last intensity event as L(up,t’),
then we can restore the light intensity at time from ¢’ to ¢; using
the mentioned linear interpolation Eq. (9).

5 EXPERIMENTS

In this section, detailed experimental settings, representative results,
parameter discussions, and test prototype on our hybrid camera
system can be found as follows.

5.1 Experimental Settings

Simulated Settings. To verify the effectiveness of our retinomor-
phic sensing, we collect a high-speed moving dataset involving 6
typical scenarios (named bullet, car, cranberry, bird, shotgun, and
splash ) recorded by ultra high-speed cameras. Our collected dataset
includes various illumination conditions, spatial resolutions, frame
numbers, and dynamic ratios.

In implementation details, we implement the simulator of ATIS,
DAVIS, Vidar, and our retinomorphic sensing. DVS is not imple-
mented because DAVIS totally includes the feature of DVS. All
mentioned simulators take frame series from high-speed videos
as the input and output asynchronous events in the format of
(Xn, Yns tn, pn)- Differently, Vidar simulator outputs spike arrays

and DAVIS simulator outputs additional conventional frames. The
two evaluation metrics [35] (i.e., PSNR and SSIM) are adopted to
report the performance scores in reconstructing visual textures.

Hybrid Camera System Setting. As depicted in Fig. 4(a), we
collect an event camera (i.e., DAVIS346, resolution of 346x260)
and a spike camera (i.e., Vidar, resolution of 400x250). The input
light is equally divided into two cameras by a beam splitter (i.e.,
Thorlabs CCM1-BS013) [36]. For temporal calibration, we write a
synchronized script to start two cameras simultaneously. For spatial
calibration, we map DVS events into event images and reconstruct
visual textures from Vidar with the shared view, and we consider the
homography between two views. After spatiotemporal calibration,
we present some representative examples in Fig. 4(b).

5.2 Effective Test

We will explore several experiments to see why and how our frame-
work works well from two perspectives as follows.

Visualization Evaluation. Some representative visualization
results on high-speed moving scenarios are illustrated in Fig. 5.
Our framework first uses a unified representation (i.e., AER) to
encode each video into asynchronous events, which includes dy-
namic and texture information. Then, our decoding framework
can effectively split dynamic events and intensity events. Dynamic
events are directly mapped into 2D image-like representations (i.e.,
event images) in the second column of Fig. 5. Visual textures are
reconstructed via the inter-event interval between two events in
the third column of Fig. 5. Note that, our framework not only ob-
tains dynamic information for machine vision and reconstructs
high-quality visual textures for human vision.
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Figure 7: Quantization results on average PSNR of visual reconstruction with different methods. Four sub-graphs depict the
performance of our retinomorphic sensing and Vidar under four typical scenarios (i.e., bullet, car, cranberry, and splash). The
horizontal axis represents the average PSNR, and the vertical axis is calculated by the bits used for each pixel per frame on
average. Notably, the horizontal gray lines show that our retinomorphic sensing system has better performance in imaging
quality than Vidar with the same data size.

PSNR=26.640, SSIM=0.977 PSNR=25.496, SSIM=0.975

PSNR=24.309, SSIM=0.972

PSNR=25.355, SSIM=0.974

Figure 8: Average PSNR of visual reconstruction with different thresholds. Notably, the thresholds 6; and 0; of fovea-like
sensing and peripheral-like sensing significantly influence the quality of image reconstruction. We can see that the threshold
smaller, the image reconstruction performance better.
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Figure 9: Average PSNR of visual reconstruction with different noise intensities. Specifically, random noises, obeying the
normal distribution, are attached to the timestamp of each event. Obviously, the PSNR slightly decreases with the creasing of
the noise intensity. It indicates that our framework is robust against random noise.

Besides, we further compare our framework with the existing
sampling manners using neuromorphic cameras (i.e., ATIS, DAVIS,
and Vidar) in Fig. 6. It demonstrates that our approach performs
better than other sampling methods especially on reconstructing
high-speed objects (e.g., the details of the wheels for the crashing
car). Specifically, in contrast to ATIS, our framework, using the
global integrating sensing, can reconstruct the visual texture of
the whole pixel array instead of only dynamic area. Meanwhile,
our approach can overcome the limitations (e.g., motion blur) of
conventional frames in DAVIS. Compared to Vidar, we effectively
extract high-speed dynamic events for machine vision as DVS does.

Quantization Results. To conduct a quantitative evaluation
of reconstruction images, we compare our framework with the
best competitor (i.e., Vidar), which utilizes the integrating sam-
pling manner for each pixel and outputs spike arrays to encode
the light intensity. As shown in Fig. 7, we report the average PSNR

between visual textures from two reconstruction methods and origi-
nal frames from each video. Apparently, our retinomorphic sensing
system consistently achieves better performance than Vidar with
the same data size on each scenario, with an average increase of 5
in PSNR when the bits per pixel is set to 10. This is because that the
dynamic events can be used to improve significantly the quality of
visual reconstruction.

5.3 Scalability Test

Beyond the effective test, we next conduct several ablation tests
to take a deep look at the impact of each parameter choice of our
retinomorphic sensing framework, and more details are demon-
strated as follows.

Threshold Parameters for Visual Texture. As shown in Ta-
ble 2, the quality of image reconstruction is improved with the



Table 2: Quantitative evaluation on visual reconstruction with different thresholds. 0; and 0, are the preset threshold for fovea-
like sensing and periphery-like sensing. It depicts that the smaller thresholds, the better performance of image reconstruction.

Threshold Scene 04 =10 04 =15 04 =20 04 =25 04 =30 04 =40 04 =50
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
bullet 38.125 0.981 37.862 0.980 37.638 0.979 37.515 0.979 37.458 0979 37.414 0.978 37.397 0.978
0; =1020 car 31.636 0.985 31.682 0.985 31.540 0.985 31.351 0.985 30.985 0.984 30.771 0.984 30.491 0.983
cranberry | 26.640 0.977 26.528 0.977 26.387 0.977 26.206 0.976 25.871 0.976 25.536 0.975 25.355 0.974
splash 31.716 0.985 31.198 0.984 30.760 0.983 30.442 0.982 30.121 0.981 29.944 0.981 29.722 0.980
bullet 37.291 0.979 36.826 0.977 36.520 0.976 36.346 0.975 36.179 0.974 36.025 0.974 35.991 0.973
9, =1530 car 30.652 0.984 30.685 0.984 30.644 0.984 30.629 0.984 30.287 0.984 30.080 0.983 29.826 0.982
cranberry | 26.126 0.977 26.082 0.977 25.931 0.977 25.749 0.977 25.158 0.975 24.858 0.974 24.781 0.973
splash 30.398 0.979 30.355 0.982 29.908 0.981 29.627 0.980 29.219 0.979 28.916 0.977 28.713 0.976
bullet 36.717 0.978 36.098 0.975 35.667 0.972 35.349 0.970 35.128 0.968 34.983 0.967 34.849 0.967
0; =2040 car 30.066 0.982 30.153 0.983 30.073 0.983 29.955 0.983 29.592 0.982 29.326 0.981 29.150 0.981
cranberry | 25.496 0.975 25.541 0.976 25.436 0.976 25.256 0.975 24.976 0.973 24.512 0.972 24.309 0.972
splash 27.846 0.962 29.243 0.976 29.250 0.978 29.011 0.978 28.874 0.975 28.423 0.974 28.033 0.974
bullet 36.209 0.977 35.333 0.970 35.000 0.969 34.594 0.965 34.303 0.962 34.129 0.961 33.971 0.961
0; =2550 car 29.443 0.979 29.634 0.981 29.586 0.981 29.450 0.981 29.107 0.980 28.826 0.979 28.691 0.979
cranberry | 24.462 0.969 24.881 0.972 24.919 0.973 24.789 0.973 24.232 0.972 24.002 0.971 23.868 0.970
splash 24.447 0.933 27.765 0.965 28.570 0.973 28569 0.975 28.166 0.973 27.862 0.972 27.795 0.972

Table 3: Data size (i.e., events per pixel) with different thresh-
olds. We can see that the thresholds 6; and 6, in our frame-
work can control the data size of asynchronous events.

Threshold Scene 04 =10 0;=15 0;=20 06;=25
bullet 0.205 0.183 0.174 0.169

0; =1020 car 0.271 0.245 0.230 0.221
cranberry | 0.395 0.311 0.271 0.248

splash 0.275 0.230 0.210 0.200

bullet 0.155 0.132 0.121 0.116

0; =1530 car 0.213 0.180 0.164 0.155
cranberry | 0.338 0.252 0.210 0.187

splash 0.220 0.173 0.152 0.141

bullet 0.131 0.106 0.096 0.090

0, =2040 car 0.182 0.147 0.131 0.122
cranberry | 0.310 0.223 0.180 0.156

splash 0.195 0.146 0.125 0.113

bullet 0.117 0.091 0.080 0.075

0, =2550 car 0.162 0.128 0.112 0.103
cranberry | 0.294 0.206 0.163 0.138

splash 0.179 0.130 0.108 0.096

decreasing of the preset parameters 8 and 6; in our retinomorphic
sensing system. This is because the smaller threshold of 8,; brings
higher temporal sampling resolution of dynamic areas, and the
smaller threshold of 6; decreases the influence of slow change in
scenarios. In addition, we also present the corresponding visual-
ization reconstruction results with different thresholds in Fig. 8.
This indicates the thresholds 0; and 6, of fovea-like sensing and
peripheral-like sensing significantly influence the quality of image
reconstruction.

Threshold Parameters for Data Size. We further analysis
the data size of asynchronous events with different thresholds 6,
and 0; in Table 3. It is obvious that smaller thresholds 6; and 6;

are easier to trigger an event, which brings larger data size in our
framework. However, the data size is a very important indicator for
high-speed cameras. In other words, the thresholds 6; and 6; can
flexibly control the data size of asynchronous events to facilitate
data transmission and storage.

According to Table 2 and Table 3, it is surprise for us to find that
the preset thresholds 6, and 6; will affect the final results involving
imaging quality and data size. In fact, we attempt to decrease the
thresholds to improve imaging quality meanwhile brings increas-
ing of data size. We believe that an optimized trade-off between
imaging quality and data size can be useful in some scenarios that
require more high-quality imaging meanwhile reducing the data
redundancy. In the future, we also explore an effective optimization
scheme to adaptively adjust the thresholds in our framework.

Robustness to Noise. Generally speaking, neuromorphic vision
sensors are always with random noises in sampling circuits and data
transmission. In this work, we further explore the effects of random
noises on our retinomorphic sensing system. Specifically, random
noises with three intensities, obeying the normal distribution, are
attached to the timestamp of each event in our framework. As
shown in Fig. 9, the reconstruction results display that the PSNR
slightly decreases with the increasing of the noise intensity. In short,
we can draw the conclusion that our framework is robust against
random noise. Actually, the noise always appears at dynamic areas
because the interval between dynamic events is usually short, and
timestamp increments bring larger relative change to dynamic
events than intensity events.

5.4 Test Prototype on Hybrid Camera System

To verify our visual sensing systems integrating fovea-like and
peripheral-like sampling, we build a prototype hybrid camera sys-
tem combining two types of neuromorphic cameras (see Fig. 4). We
evaluate the effectiveness of two tasks involving image reconstruc-
tion for human vision and object detection for machine vision.
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Figure 10: Representative reconstruction images using our hybrid camera system (i.e., DAVIS346 and Vidar). Note that, our
strategy, combining the HDR property from Vidar and high-quality textures from Vidar, can obtain better visual results
than other methods using the single-modality (e.g., DVS reconstruction utilizing the E2VID [25] and Vidar reconstruction by

computing the interval between two spikes).
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Figure 11: Representative object detection results using our
hybrid camera system (i.e., DAVIS346 and Vidar). (a) high-
speed moving tennis in low-light. (b) UAV in low-light. (c)
High-speed rotation characters with 2600r/min. We can see
that our detector, inheriting the HDR property from DVS
and high-speed visual textures from Vidar, obtains better
performance than single-modality in challenging scenarios
(i-e., high-speed and low-light).

Image Reconstruction. Inspired by the complementary fil-
ter [27], we use our decoder to reconstruct high-speed images
using DVS events and Vidar spikes. As shown in Fig. 10, our re-
construction approach, integrating Vidar and DVS, achieves better
performance for human vision than other method using the single-
modality (i.e., RGB frame from DAIVS346, event image by mapping
DVS events, spike image via projecting Vidar spikes, Vidar recon-
struction image via computing the interval between two spikes, and
DVS reconstruction image utilizing the E2VID [25]). This is because
that only DVS is hard to reconstruct clear textures, and Vidar fails
to capture the light intensity in extreme low-light scenarios. Appar-
ently, our hybrid camera system, as the prototype of the proposed
retinomorphic sensing system, can provide a simulated platform
to take advantages of the HDR property of DVS and high-speed
textures of Vidar for human vision.

Object Detection. As depicted in Fig. 11, we exhibit represen-
tative results on three typical scenarios (i.e., high-speed moving
tennis in low-light, UAV in low-light, high-speed rotation charac-
ters) using our newly built hybrid neuromorphic camera system.
We directly map each event stream into event images and input the
reconstructed Vidar images for the detector (i.e., SSD [18]) respec-
tively, then we further adopt the post-processing fusion strategy
(i.e., non-maximum suppression [1]) to combine the bounding boxes
of two streams into the final results. For example, we can find that
DVS, taking the advantage of its HDR, has brought a new per-
spective to overcome the shortage of Vidar in low-light scenarios.
Meanwhile, Vidar can provide high-speed visual textures to serve
for high-quality object detection in high-speed rotation characters.
In other words, the joint detection, using the retinomorhic sampling
manner, integrates DVS and Vidar to overcome the limitation of
conventional frames in challenging scenarios (i.e., high-speed and
low-light).

6 CONCLUSION

In this paper, we present a novel paradigm for future multimedia
computing, namely retinomorphic sensing, which can effectively
sense both dynamic information and visual textures as the retina
does. To the best of our knowledge, this is the first work to integrate
fovea-like and peripheral-like visual sampling mechanisms to gen-
erate asynchronous events using a unified representation (i.e., AER).
The results show that our retinomorphic visual sensing system can
extract dynamic events for machine vision and reconstruct visual
textures from intensity events for human vision. We further build
a prototype hybrid camera system to verify this strategy on tasks
such as image reconstruction and object detection. We believe this
work will aim at addressing the shortages of conventional cameras
towards the next-generation neuromorphic vision sensor. We also
believe that this novel paradigm will provide insight into future
multimedia computing.
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