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Abstract—Event cameras as bio-inspired vision sensors, have
shown great advantages in high dynamic range and high temporal
resolution in vision tasks. Asynchronous spikes from event cam-
eras can be depicted using the marked spatio-temporal point pro-
cesses (MSTPPs). However, how to measure the distance between
asynchronous spikes in the MSTPPs still remains an open issue.
To address this problem, we propose a general asynchronous
spatio-temporal spike metric considering both spatio-temporal
structural properties and polarity attribute for event cameras.
Technically, the conditional probability density function is firstly
introduced to describe the spatio-temporal distribution and po-
larity prior in the MSTPPs. Besides, a spatio-temporal Gaussian
kernel is defined to capture the spatio-temporal structure, which
transforms discrete spikes into the continuous function in a
reproducing kernel Hilbert space (RKHS). Finally, the distance
between asynchronous spikes can be quantified by the inner
product in the RKHS. The experimental results demonstrate that
the proposed approach outperforms the state-of-the-art methods
and achieves significant improvement in computational efficiency.
Especially, it is able to better depict the changes involving spatio-
temporal structural properties and polarity attribute.

Index Terms—Spatio-temporal point processes, spike metric,
event cameras, kernel learning, neuromorphic engineering.

I. INTRODUCTION

VENT cameras, namely neuromorphic cameras, such as
the dynamic vision sensor (DVS) [1]-[3], are bio-inspired
vision sensors that, in contrast to frame-based cameras, work
in a completely different way: pixels independently respond
to intensity changes with a stream of asynchronous spikes,
instead of providing structured frames at a fixed rate. Indeed,
event cameras are gaining more and more attentions in com-
puter vision [4]-[15] owning to the advantages over conven-
tional cameras: high temporal resolution and low latency (both
in order of microseconds), high dynamic range (HDR), low
power, and little redundancy.
Generally, the address-event representation (AER) [16] pro-
tocol for event cameras is utilized to output the spikes, and a
spike can be described by a tuple (x,y,¢,p) which consists
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Fig. 1: The perspectives and challenges of asynchronous
spatio-temporal spike metric for event cameras. How to mea-
sure the distance between asynchronous spikes in the marked
spatio-temporal point processes (MSTPPs) still remains an
open issue, and it is one of the key challenges of event-based
signal processing in many practical applications involving
neuromorphic engineering [19]-[22], spike coding [23], [24]
and machine vision [20], [25]-[28], [33].

of four essential elements: coordinates (x,y), firing time ¢,
and polarity p respectively. As a consequence, a spike stream,
namely spatio-temporal events with labeled polarity, is a set
of discrete and sparse points, and it can be depicted using the
marked spatio-temporal point processes (MSTPPs) [17], [18].
In fact, how to measure the distance between asynchronous
spikes in the MSTPPs, as shown in Fig. 1, is one of the
key challenges of event-based signal processing in many
practical applications. Specifically, it refers to neuromorphic
engineering (e.g., retinal prosthesis measurement [19], [20]
and multi-neuron synchrony [21], [22]). Then, it is commonly
related to spike coding involving motion estimation [23] and
distortion measurement [24]. What’s more, it is also important
for machine learning towards event-based vision [20], [25]-
[28] and robust learning with point process networks [29]—
[32], in particular for supervised learning algorithms that
deal with asynchronous spatio-temporal spikes, because of the
shortcomings of loss functions to measure distance [20], [33]
and train event-based models [27], [28], [34].

Since the spatio-temporal spike space is devoid of an
algebra [17], [18], it imposes many challenges to event-based
signal processing approaches, and existing image or video
quality assessment techniques cannot be directly applied to
this novel data. As a result, transformation strategies [18]
have been made by mapping a set of spikes into image-
like 2D representations prior to processing. Examples are the
integration of spikes on the image planes [10], [33], [35] as
well as time surfaces [36], [37], but those representations
fail to completely depict raw spatio-temporal structure for
asynchronous spikes. In addition, some works have been
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done in order to quantify the similarity between two spike
trains [17], [38]-[40], which treat single-neuron spike train
as the operational unit using several positive-define kernels
in Hilbert space. Recently, these have been further extended
to multi-neuron [22], [23], [41]-[43]. However, for the most
part, such attempts still remain a mere curiosity to explore
the sum kernel for computational neuroscience, which is the
unweighted sum of temporal kernels over single-neuron spike
trains. As a matter of fact, for asynchronous spikes from event
cameras which typically contain structural properties [13],
[44], [45], this is the prime importance to characterize spatio-
temporal distribution for spike metrics in the MSTPPs. Be-
sides, the polarity pe{1, —1} is one significant attribute from
the recordings of event cameras that represents the illumination
change using ON or OFF spikes [11], [46]. In other words,
spike metrics need to incorporate spatio-temporal structure
and polarity attribute existing in the MSTPPs so as to better
measure the distance between asynchronous spikes.

Toward this end, this paper proposes a general asyn-
chronous spatio-temporal spike metric (ASTSM)' considering
both spatio-temporal structural properties and polarity attribute
for event cameras. Technologically, we first put forward the
conditional probability density function to describe the spatio-
temporal distribution and polarity prior in the MSTPPs. Then,
a spatio-temporal Gaussian (i.e., 3D Gaussian) kernel is intro-
duced to depict spatio-temporal structure, and it transforms
discrete spikes into the conditional intensity function in a
reproducing kernel Hilbert space (RKHS). Finally, the distance
between asynchronous spikes can be measured using the inner
product in the RKHS.

In summary, the main contributions of this paper are as
follows:

o We propose an asynchronous spatio-temporal spike met-
ric taking into account spatio-temporal structural prop-
erties and polarity attribute for real data from event
cameras. Additionally, we provide the results and expla-
nations on why our approach performs better than the
state-of-the-art methods.

« We establish the conditional probability density function
depicting polarity priors in the MSTPPs. In particular, a
3D kernel function, involving spatio-temporal structure,
is introduced to map discrete spikes into the conditional
intensity function in the RKHS, and we further build
an optimization kernel parameters model to increase the
flexibility and purse the better performance for a known
statistical distribution.

o We provide a spike metric dataset containing simulating
data and an augmentation of existing datasets with various
distortion operation. We believe this dataset opens up an
opportunity for the research of this challenging problem.

To the best of our knowledge, this is the first work to explore
such a method for asynchronous spatio-temporal spike metric
for event cameras. We believe that this methodology has the
potential to enlarge the footprint of the point process applied
to event-based signal processing and neuromorphic vision.

TThe project’s code and dataset are available on the following page: https:
//github.com/jianing-li/asynchronous-spatio-temporal-spike-metric

The rest of this paper is organized as follows. Spike metrics
are reviewed in Section II. Section III describes the spike firing
mechanism and then defines the MSTPPs for asynchronous
spikes. Section IV presents the approach considering both
spatio-temporal structure and polarity attribute. Finally, the
experimental results and some discussions are reported in
Section V, while some conclusions are drawn in Section VI.

II. RELATED WORK

In general, spike metrics aim at quantifying the difference
between event-based streams [17], [22]. The early attempts,
utilizing rate-based coding strategies [47], [48], have been
demonstrated that the average spike count can primitively
represent the discrimination between neuron responses in neu-
roscience. Moreover, transformation strategies have been made
by integrating a set of spikes into the image planes [10], [33]
as well as time surfaces [36], [37]. Obviously, those rate-based
hypotheses fail to make the best of spike timings for neural
processing. On the contrary, point process theory for analyzing
spatio-temporal data develops primarily in statistics [18], and
currently this theory has been the most widely used method to
measure the distance between two or more spike trains [17],
[22], [38]-[43] in computational neuroscience as well as in
all other areas of neuromorphic engineering [23], [24], [49].
According to the literature, these approaches can be broadly
classified as single-neuron spike train metrics and multi-
neuron spike trains metrics as follows.

A. Single-Neuron Spike Train Metrics

In order to measure the distances between two spike trains,
some single-neuron spike train metrics [17], [38]-[40] have
been mainly focused on kernel methods. Rossum et al. [38]
adopt the embedding approach where two spike trains are
convolved with a Gaussian kernel function, then the distance
is computed as the integral of the difference between two
resulting functions. Paiva et al. [39] present a general frame-
work in the RKHS to mathematically manipulate spike trains,
the main idea of which is the definition of the inner product
to allow event-based signal processing from basic principles.
The model in [17], soon followed by the other work [40],
incorporates simple mathematical analogies and attempts the
positive definite function to quantify spike trains. Nevertheless,
those metrics, without exploiting the spatio-temporal structural
information in multi-neuron spike trains, are most commonly
utilized in the single-neuron spike train.

B. Multi-Neuron Spike Trains Metrics

On these bases, those approaches have been further devel-
oped to multi-neuron spike trains metrics [22], [23], [41],
[42], namely spatio-temporal spike metrics. The work by
Houghton et al. [41] explores an extension of the van Rossum
metric [38] to multi-neuron measurement, where basis vectors
are used to interpolate between two views in a geometric
vector space. Brockmeier et al. [42] exhibit the problem of
optimizing multi-neuron spike trains metric to decode the
real recorded neural data. More recently, Tezuka [22] utilizes
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the R-convolution kernel to measure the distance for neural
decoding. What’s more, Dong et al. [23] model one pixel
as a single-neuron for event camera and then implements the
unweighted sum of single-neuron spike train temporal kernels
for motion estimation in spike compression. Unfortunately, a
review of the existing methods [22], [23], [41], [42] on multi-
neuron can be found that such attempts make no use of spatio-
temporal structure in the MSTPPs, especially polarity prior for
event cameras. Therefore, this paper proposes an asynchronous
spatio-temporal spike metric for event cameras considering
spatio-temporal structure and polarity attribute in the MSTPPs.

III. THEORETICAL FOUNDATION

In this section, we will first present the spike firing mech-
anism and then define the MSTPPs for the output from event
cameras. In addition, we further summarize some shortages
for the state-of-the-art methods by analyzing spatio-temporal
structure and polarity attribute.

A. Marked Spatio-Temporal Spikes

Event cameras [1], [3], [50], in contrast to conventional
frame-based cameras, have independent pixels that respond
to the changes in the illuminance L(u,t). Specifically, a spike
en = (Tn,Yn, tn, Dn) is fired from a pixel u,, = [z, y,] at the
time t,, when the intensity change reaches a firing threshold
Cin, and it is defined as:

AlnL=InL(tn, t,) — InL(wy, t, — Aty) = ppCyp, (1)

where At,, is the time since the last spike at the same pixel,
and the polarity p, € {1, —1} represents ON or OFF spikes
respectively.

The spike train T’ = {¢t,, € I': n=1,..., N}, as shown in
Fig. 2(a), is a sequence of ordered spike firing timestamps
for each pixel in event cameras, which can be mathematically
presented as:

N
T ()= pnb(t—tn) 2)
n=1
where NV is the number of spikes in single pixel during the
time interval T', and ¢ () refers to the Dirac delta function,
with & (t) = 0,Va # 0, and [§ (¢)dt = 1.

Similarly, the pixels generate asynchronous spike stream
S = {&n,Yn,tn €Ts:n=1,..., N} in the spatio-temporal
interval [';. S can be divided into spike cuboids [51], [52]
s € 5, and it can be described as:

N
S (@,y,1) =Y pud (& = T,y = Yyt — tn) 3)

n=1

To give a measure-theoretical foundation to asynchronous
spikes, some works have imposed a certain structure on set
S. Based on these results [17], [18], [53], we assume that S
is equipped with a metric d such that (S, d) is complete and
separable. For instance, S could be a compact subset of R?
equipped with euclidean distance. In such a case, S is said to
be a locally finite configuration, so the family of which can
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Fig. 2: Measuring spatial correlation between spike trains. (a)
We take one pixel as ordinate origin recorded spike train,
which is a sequence of ordered spike firing timestamps for the
current pixel. The pixel index is a spiral-like ordering around
the current pixel. (b) The distance [17] between spike trains for
three representative pixels shows that neighboring pixels are
more relevant and asynchronous spikes exist spatial structure
from event cameras.

be denoted by N'/. Formally, the MSTPPs can be defined as
follows [18]:

Definition 1. (Marked spatio-temporal point processes).
Let (S,d) be a complete and separable metric space. The

N
S($7yat) :ZPn5(17—5€n,y—yn,t—tn), 0< N <oo, is
1

a measurable:mapping from some probability space [Q, F,P]
into the measurable space N*. If N < oo almost surely (a.s.)
then S is called a finite MSTPPs.

The probability space [Q2, F,P] is a mathematical model for
random experiments, where the sample space €2 is the set of
all possible outcomes. F is the o-algebra of subsets of the
sample space, and P : F — [0, 1] is probability measure.

B. Problem Statement

In practice, the core challenge is to quantify asynchronous
spikes in the lack of stand algebraic operations such as linear
projection and linear combination. Kernel methods [17], [23],
[39], which have shined new light into this key problem by
providing a general framework for measuring spike trains,
can extend linear to non-linear modeling in input space, and
especially map abstract object to Hilbert space. In this work,
we adopt the kernel method to measure the distance between
asynchronous spikes in the MSTPPs defined as follows:

Definition 2. (Spatio-temporal spike distance). Ler s; and
s; be two spike cuboids in the spatio-temporal I respectively,
and the inner product is introduced to measure the distance
between asynchronous spikes in a Hilbert space by:

llsi — 55| = \/n(si,si)—l—/@(sj,sj)—Zm(si,sj) 4
where k (s;,5;) is the inner product of two streams s; and s;.

To design an effective asynchronous spatio-temporal spike
metric, we first conduct two experiments involving measuring
the spatial correlation between spike trains and analyzing the
statistical polarity attribute. The former depicted in Fig. 2,
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Fig. 3: Analyzing the statistical polarity attribute. (a) We
regard the spike cuboid as computing element in temporal.
(b) The ON polarity ratios, calculating in temporal index, are
randomly changing, which illustrate that we can take polarity
attribute as the prior probability distribution in spike metric.

takes one pixel as the ordinate origin from spike stream, and
spike trains are made up of the surrounding pixels in Fig. 2(a).
As shown in Fig. 2(b), the horizontal axis is the pixel index
of spike train, and the vertical axis is the distance between
two spike trains of ordinate origin and surrounding pixel
index. We select three representative pixels as ordinate origins,
respectively. The distances between spike trains are computed
by using a single-neuron spike train metric [17], and which
gain gradually with the increasing of pixel index. Note that
spike trains from neighboring pixels are more relevant. In other
words, spatial structural information exits in asynchronous
spikes from event cameras. The latter one, regarding the spike
cuboid as a computing element in Fig. 3(a), shows that the ON
polarity ratios are randomly changing in Fig. 3(b). Hence, we
can take polarity attribute as the prior probability distribution
in spike metric. In fact, a review of existing approaches [22],
[23], [41], [42] on multi-neuron spike trains metrics almost
takes no use of spatio-temporal structure and polarity attribute.
In this respect, we propose the following spatio-temporal
structure and polarity attribute to define our asynchronous
spatio-temporal spike metric:

o spatio-temporal structure: A 3D kernel function, in-
volving spatio-temporal structure, is introduced to map
discrete spikes into the conditional intensity function in
the RKHS.

e polarity attribute: By analyzing the spike firing mech-
anism, the conditional probability density function is
established to depict polarity attribute in the MSTPPs.

Hereby, the potential of the above formulation will be

highlighted in the following section by focusing on spatio-
temporal structure and polarity attribute.

IV. OUR APPROACH

This section will give detailed descriptions of the proposed
asynchronous spatio-temporal spike metric (ASTSM). Specif-
ically, we first present the conditional intensity function (CIF)
to depict the MSTPPs. Then, we introduce a 3D Gaussian
kernel function to capture the spatio-temporal structure, and
we further build an optimization model to learn kernel param-
eters. Finally, the distance between asynchronous spikes can
be computed by the inner product in the RKHS. More details
are described as follows.

A. Asynchronous Spatio-Temporal Spike Metric

In the MSTPPs, the CIF is extremely important factor
contributing to describe spatio-temporal spikes [17], [18],
which can depict the intensity in spiking history H; =
{en € T4|t, < t}, and it is formulated as:

f(x7y,t,p|Ht)
1 _F(xay7t|Ht)

where f (xz,y,t,p|H;) is the conditional probability density
function in spiking history H;, and F (z,y,t|/H;) is the
cumulative distribution function.

By applying the Bayesian theorem to Eq.(5), the CIF
A(x,y,t,p|H) can be re-expressed as:

)‘(xvyatvp‘Ht) = (5)

f(xvyaﬂHt)
A ) 7ta H;) = . H7 ) 7t
bt = 12y T Pt
= )‘(‘T y7t|Ht) : ( |Ht7x yat)
where ) fffF A2 (z,y,t,p|Hy) dedydt <oo, thus the
pe{l,—1}

intensity function A (z,y,t,p|H;) is an element of Lo (T'y)
space.

In fact, we can choose a 3D smoothing function h (z, y, t) to
capture spatio-temporal structure, and use the 3D convolution
to convert discrete spikes to continuous intensity function. It is
similar to the CIF A (z,y, t, p|H) in history time H; without
considering the polarity, and it is computed as follows:

AMa,y, t|Hy) = s (z,y,t) x h(x,y,t)
N
-2 ha

Then, f (p|H:,x,y,t) can be calculated based on the po-
larity probability distribution in history time Hy, and it is
modeled as:

f (p‘Ht7x7y7t) =

t—t,) @

—Tn,Y — Yn,

#{en EFs|Pn:pa$n < Z,Yn <y;tn <t}

# {en € Fs}

where # {} represents the counting numbers in the spatio-
temporal interval T',.

Besides, for any two spike cuboids s; and s;, the inner
product  (s;,s;) can be given by:

K(sivsj) = <)\5i (1' Y, t, p|Ht) >\5j ((E Y, t, p|Ht)>L (Ts)

Z /// EN {L‘ y7t p|Ht) ry ({17 y,t p|Ht)dxdydt
pe{l,—

It follows from Eq.(6) and Eq.(7) that Eq.(9) can be rewrit-
ten as:

K (si,85)

- ¥ zz/// o 0/,

pe{l,—1} m=1n=1
'ij (p|Ht7l‘,y,t)h(m_.ﬁ?(%),y—y%),t—t%))
-h(x—mg),y—ygj),t—tg)) dzxdydt

where IV;, N; are the numbers in spike cuboids s; and s;.
In order to facilitate the analysis and calculation, we further
simplify that f,, (p|H¢,2,y,t) and fs; (p|H¢, 2,y,t) can be

(®)

©))

(10)
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approximated to polarity statics A (s;, s;) in the whole spike
cuboid respectively, and it can be presented as:

A(Smsj Z fsl P|Ht,l Y, )fs] (p|Htax Y, ) (11)
pe{l,—1}

For two spikes 65,3 and e(]) in spike cuboids s; and s;

respectively, the inner product between two spikes can be
given by:

() - I 16

-h(w—xﬁ)7y—y£),

gt — t(z’))
(12)
- tgg’)) ddydt
For simplicity, a 3D Gaussian kernel is utilized as smoothing
function in this study, and it can be defined as:

22 _ 2 2

e 2% e i e 2%
Iy ly Iy
where o,, 0y, and o, are the standard deviation parameters

of the 3D Gaussian kernel, and [, = \/\/70,, l, = \/\/Toy,
and Zt = \/7?0}.

From Eq.(12) and Eq.(13), so the & (65,), e%”) can be re-
expressed as:

h(z,y,t) =

13)

%’L)—m%j))Q (y('>_u(n) G
. . - 2 - 2 - 2
K (6%), 653)> =e€ 4oy 4oy dof

x

(14)

In addition, using Eq.(11) and Eq.(14), the inner product
K (si, sj) between two spike cuboids can be further rewritten

as:
G

N; Nj
K(si,85) = A(ss, s Z Z
m=1n=1
Z fsi p‘Hhxvy’ )fsj (p‘Ht,I,y,t)
pe{l,—1}
NN, (99 () ()’

- 2 - 2 - pl
. § : § :e 402 402 407

m=1n=1

(15)

Note that the optimal kernel parameters 8 = {0, 0,0}
can be learned by building the optimization problem, our
ASTSM can become more flexible and pursue a better perfor-
mance to measure the distance between asynchronous spikes.

B. Learning Kernel Parameters

Theoretically, the optimal kernel parameters 8 for 3D Gaus-
sian kernel function can be learned by minimizing the fitting
error [54]. In this paper, we further exploit the transformation
strategy, which calculates the correlation coefficients between
the distance d from spike metrics and performance score p;
(i.e. compression ratio [23], [24] or PSNR [55], [56]). Hence,
the error function J (@) for given 6 can be written as:

J() =

S (s, S,

i€ERjJED,;

(16)

0) — fo(ps(Si, S;), )II* + 7 [1b]

where d is the distance between two spike streams involving
raw data S; and distortion stream .S;, and the corresponding

Algorithm 1 Asynchronous spatio-temporal spike metric

Input: Two spike streams S; and S
Output: The distance ||.S; — S;|| between two streams
Initialize : || S; — S;|| = 0; spike cuboid parameters W, H
and L; 3D Gaussian kernel parameters 8 = {0, 0,,0;}
Learning 3D Gaussian kernel parameters : 0"t
6™ +1n- V22 by Eq. (18)
1: Asynchronous streams S; and S are divided into K spike
cuboids s} and s% respectively
cfor k=1,.... K do

. f§ < getPolarity(s;, s¥) based on Eq.(8)

A(sf, J) — computePolanty(f fk) by Eq.(11)
K(sp, sk) « getInnerProduct(s s¥) using Bq.(15)

|s¥ — s¥|| «+ getDistance(s!, ") utlhzed Eq.(4)
15— 51 15— 51 + st = st

: end for

: return ||S; — 5|

R A A

sets are R and D; respectively. f is a polynomial function of
degree b, which is possible to fit curve between the distance d
and performance score ps. Additionally, 7y is a hyper-parameter
that weights the relative contribution of the norm penalty term
to avoid overfitting.

Then, we can solve the following minimization problem:

60" = argmin J(6) (17)
0

In this case, the gradient with respect to the kernel param-

eters 0 is calculated, and we perform this update as follows:

(nt1) _ g) _ . g2

(7] =0 n-V 20

where the learning rate 7 is a hyper-parameter that controls
how much we are adjusting 8 with respect to the loss gradient.

According to the gradient descent method, this updating
equation can minimize the objective function J(@). It is
noteworthy that the optimal kernel parameters depend on the
statistical distribution from a dataset and specific computer
vision tasks. In other words, the parameters 6 are closely
linked to performance score ps. The optimization process can
be described as follows:

1) Set the learning rate n and the maximum iteration

number N,, and set € to a very small positive number.

2) Initialize the kernel parameters 8(®) and set the iteration

step n = 0.

3) Fit a polynomial function f;(ps(S;,S;, 0(®),b) be-

tween the distance and performance score.

4) Update the kernel parameters 8(™) using gradient de-

scent method in Eq.(18).

5) If J(0) < € or n > N,, stop. Otherwise, set n = n+1,

go to step (4).

Finally, the distance d(.S;, S;,0) = ||S; — S| between two
spike steams S; and S; from event cameras can accumulate
the distance between two spike cuboids s; and s;, which
are regraded as basic computing units. After partitioned into
multiple spike cuboids, the distance ||s; — s;|| between spike
cuboids s; and s; can be computed by Eq.(4) and Eq.(15),
and more details are demonstrated in Algorithm 1.

(18)
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(a) MNIST-DVS dataset [57]

(b) DVS reconstruction dataset [55]

(c) Color event camera dataset [58]

Fig. 4: For a better perspective, we directly map asynchronous spatio-temporal spikes into an image-like 2D representation in
a time interval. (a) The MNIST-DVS [57] is captured by a DVS128 [1] for dynamic handwritten digits in the existing MNIST
dataset. (b) The DVS reconstruction dataset [55] is recorded using a DAVIS240C [2] in natural scenes. (c) The color event
camera dataset shows representative indoor and outdoor scenes based on a Color-DAVIS346 [3]. Notably, ON spikes are red,
OFF spikes are green in (a) and (b). ON spikes are colored by the corresponding filter color, and OFF spikes are black in (c).

V. EXPERIMENTS AND DISCUSSIONS

This section will first introduce the detailed experimental
settings. Then, we describe the implementation details of
spike metrics and report the representative results. Moreover,
two effective tests, involving polarity attribute and spatio-
temporal structure, are conducted for performance evaluation.
Finally, motivated by the previous work [53], we design a
transformation strategy to quantify spike metrics.

A. Experimental Settings

To verify the effectiveness of our approach, we provide a
spike metric dataset including the simulating dataset and real
spatio-temporal spike streams, in which each spike stream has
raw data and the corresponding distortions. Specifically, the
simulating dataset depicts the moving target with an actual
motion trajectory. Besides, the real dataset consists of three
parts in Fig. 4, which are collected from the MNIST-DVS [57],
the DVS reconstruction dataset [55], and the color event
camera dataset (CED) [58], respectively. More precisely, the
first part represents moving digits with three scales (i.e. scale4,
scale8, and scale16) by a DVS128 [1]. The second part records
natural scenes (i.e. bicycle, night drive, and sun) using a
DAVIS240C [2], and the rest part captures a wide variety of
indoor and outdoor scenes (i.e. city drive, indoor office, and
dancing) based on a Color-DAVIS346 [3].

In order to conduct a comprehensive evaluation of the pro-
posed asynchronous spatio-temporal spike metric (ASTSM),
we compare our ASTSM and ASTSM™ (i.e., ASTSM adopts
the learning kernel parameters) with the state-of-the-art meth-
ods [17], [23] and two baselines, including:

1) KMST [17]: Multi-neuron spike trains metric that im-
plements the unweighted sum of kernel method for each
spike train (KMST).

KMST-P [23]: The approach that takes the interference
polarity into measure spike train followed by the former
work [17], which regards the interaction between ON
and OFF polarities for event camera.

KMST™: The KMST utilizes the proposed learning
kernel parameters.

KMST-P*: The KMST-P uses the proposed learning
kernel parameters.

2)

3)

4)

B. Validation Issues

The objective of the first experiment is to assess the validity
of our approach, so that we adopt three representative dis-
tortion operations on raw spike stream with three scales (i.e.
scaled, scale8, and scalel6) from MNIST-DVS [57], which
consist of randomly spatio-temporal coordinate changes, spike
plane translation and spike cube rotation from raw data.
Besides, the spike cuboid parameters are set as W = 128,
H = 128, and L = 1200us in this experiment. Meanwhile,
the parameters of the 3D Gaussian kernel are initialized as
0y =5, 0y = 5, and oy = 5000. Some representative results
and experimental analyses can be found as follows.

Validation on spatio-temporal coordinate changes. As
illustrated in Fig. 5(a)-(c), we present raw data and two
degraded spike streams, in which spatio-temporal coordinates
for raw data are randomly changed. More precisely, g and
1 are the maximum changing values of = and y coordinates,
respectively. We can see that two degraded spike streams be-
come more sparse and scattering than raw data when s = 10
and 7 = 8 in Fig. 5(b), and s = 20 and ¥ = 5 in
Fig. 5(c). Much to our surprise, the distance between raw
data and degraded spike streams is gradually growing with the
increase of g and 17 in Fig. 5(d). This may be caused by the
fact that our ASTSM can measure the distance between raw
data and degraded spike streams via randomly spatio-temporal
coordinate changes.

Validation on spike plane translation. Degraded spike
streams are generated by translating spike plane with constant
speed. In other words, we can implement the maximum spatio-
temporal moving parameters ¢x and ¢y within a constant
temporal window. Note that the location of raw data has a
liner movement in spatio-temporal domain when ¢x = 25
and ¢y = 20 in Fig. 5(f), and ¢x = 50 and ¢y = 25 in
Fig. 5(j). The discrimination between raw data and degraded
streams in Fig. 5(k), which is a smoothing 3D curve, indicates
clearly that our ASTSM can also measure the distance under
spike plane translation operation.

Validation on spike cube rotation. Distortion streams are
obtained by rotating spike cube in x-y plane. More precisely,
we first select a fixed point in z-y plane. Then, spike cube is
rotated with different angles around the fixed point. Fig. 5(i)-
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Fig. 5: Three representative operations, involving randomly spatio-temporal coordinate changes in (a)-(c), spike plane translation
in (e)-(g), and spike cube rotation from raw data in (i)-(k), are conducted to assess the validity of our ASTSM. The raw spike
streams are three digits (i.e., “0”, “3”, and “7”) of three scales (i.e. scale4, scale8, and scalel6) within 200ms from MNIST-
DVS [57], respectively. From (d), (h), and (1), we can see that our ASTSM can measure the distance between raw data and

degraded spike streams.

(1) report raw data and two degraded spike streams by rotating
spike cube around the fixed point (64,64) in x-y plane.
Degraded spike streams exist visual rotation in spatial domain
when rotation angle Ry = 180° in Fig. 5(j), and Ry = 270°
in Fig. 5(k). Obviously, Fig. 5(1) shows that the distance is
symmetric curve along with Ry, which is gradually increasing
from the rotation angle Ry = 0° to Ry = 180° and then starts
to decrease until Ry = 360°. Hence, our ASTSM can reflect
this distortion operation involving spike cube rotation.

In summary, as shown in Fig. 5, we can see that the curves
of our ASTSM are fairly consistent with three representative
degraded operations. In other words, the proposed approach,
considering both spatio-temporal structure and polarity at-
tribute, can measure the discrimination between raw data and
degraded spike streams in various degrees.

C. Effective Test

The second experiment aims to effectively evaluate the
proposed spike metric from two perspectives: spatio-temporal
structure and polarity attribute. To this end, two effectiveness
tests are conducted on real asynchronous spikes and simulating

data compared with the state-of-the-art methods [17], [23] as
follows.

Evaluation on spatio-temporal structure. In this part,
to understand how the changes of spatio-temporal structure
influence spike metrics, we implement a motion estimation
experiment, namely tracking a moving target in the spatio-
temporal domain. Actually, tracking performances can reflect
the accuracy of motion estimation by spike metrics for event
camera. From a mathematical standpoint, we can consider
two metric indexes including tracking error and robustness.
We use the following simple rule: a cycling moving target is
continuously tracked on various noise intensities N, that is
more suitable in a practical setting. In such a case, Fig. 6(a)-
(c) present moving target trajectories along with the increasing
noise intensity N,. Besides, Fig. 6(d) describes three tracking
error curves for spike metrics. Surprisingly, the red curve
remains lower compared with other methods [17], [23] and
is relatively stable by the end of N, near to 1.5, then it
gradually starts to increase. Hereby, this indicates that our
ASTSM, defining a 3D Gaussian kernel to capture spatio-
temporal structure in the MSTPPs, can measure better the
distance between spike streams than other methods [17], [23].



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

viii

2

— | == KMsT[17] /
3
= — -+ KMST-P[23] A
Bd51 —— AsTSM il
w /7 -
14 4 /
2 !
S S
o S
£ R
§ 15 o
S T
= amm
0
0.0 05 10 15 2.0
NT

(d) Spatio-temporal structure

60000

—=- KMST|[17]
— - KMST-P[23]
—— ASTSM

40000

Distance

20000

(2 R- =0.8

(h) Polarity changes

Fig. 6: Effective test from the perspectives of spatio-temporal structure and polarity attribute, respectively. (a)-(c) We illustrate
raw data depicting cycling moving target from simulating dataset and two degraded spike streams by adding random noise
with the intensity N;. (e)-(f) We show raw data and two degraded spike streams by changing the ratio R, of ON-OFF polarity,
which record the bicycle scene using a DAVIS240C [2] with 5000 spikes from the DVS reconstruction dataset [55]. (d) and (h)
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and polarity attribute.

Evaluation on polarity attribute. In this second part, we
will explore the experiment to see why and how our ASTSM
works in the changes of polarity attribute. Following the
strategy, we remain on the coordinates and then change the
ratio R, of ON-OFF polarity for spike stream. As we can
see in Fig. 6(e)-(g), the greater the ratio R, is, the more ON
polarity spikes exists in spatio-temporal domain, which takes
in a greater variety of polarity attribute. Meanwhile, Fig. 6(h)
plots three curves along with the increase of the ratio R, and
reports the distances based on Our ASTSM and the state-of-
the-art methods [17], [23]. Obviously, the blue dotted line
indicates that the KMST [17], without taking into account
polarity attribute, keeps unchanged and fails to depict the
discrimination between raw data and degraded spike streams.
In deed, the green dotted line illustrates that the KMST-
C [23], considering the interference polarity into spike trains,
can highlight the growing trend of distortion degrees with the
increasing ratios R;. Nevertheless, this curve demonstrates the
phenomenon of random fluctuation in spike metric. On the
contrary, the proposed approach follows a smoothing curve
in the red line, rather than the fluctuating curve. Notably,
the proposed approach, introducing the conditional probability
density function in the MSTPPs, can measure better than the
state-of-the-art methods [17], [23] involving polarity changes.

D. Scalability Test

In this third experiment to provide the quantitative mea-
surement on the performance of all spike metrics and further
verify the generality of our method, we follow the evaluation
procedures employed in the video quality test (e.g., PSNR [59]

and SSIM [60]), where four evaluation metrics, consisting
of Pearson linear correlation coefficient (PLCC), Spearman
rank correlation coefficient (SRCC), Kendall’s rank correlation
coefficient (KRCC), and root mean-squared error (RMSE),
are used to calculate the correlation coefficients between
performance scores ps (i.e. compression ratio [23], [24] and
PSNR [55], [56]) and the distance d from all spike metrics.
The larger PLCC, SRCC, and KRCC the better, whereas
RMSE is the opposite. Due to asynchronous spatio-temporal
spikes lack of the mean opinion score (MOS) by direct
observation, which is obtained from subjective experiments.
Motivated by the previous work [53], utilizing the recognition
accuracy instead of the MOS to quantify the assessment for
fingerprint images, we also adopt the same transformation
strategy that two performance indexes are from compression
ratio in lossy spike coding [24] and PSNR for real-time in-
tensity reconstruction [55], [56] for event cameras. Additional
details are provided in the supplementary material.

Besides, the spatial parameters of spike cuboid in our
ASTSM are set as the length and the width of event camera
array size, and the corresponding temporal parameter is set
as L = 1200us. We set the learning rate n = 0.001, the
maximum number iteration number N, = 100, and the initial
3D kernel parameters 8(°) = {10, 10,1000} by the empirical
values. According to the iteration using gradient descent in
Algorithm 1, the optimization kernel parameters @(*) for
our ASTSMT in three collected datasets (i.e., the MNIST-
DVS [57], the DVS reconstruction dataset [55], and the color
event camera dataset (CED) [58]) are {8.96,9.21,983.21},
{9.21,8.93,932.39}, and {8.75,9.35,962.17}, respectively.
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Fig. 7: Scalability test by fitting the curves between performance scores and the distance. Each sample point refers to one testing
spike stream. (a)-(d) The curves show the trends of compression ratios and quantified distances from spike metrics, including
KMST [17], KMST-P [23], our ASTSM, and ASTSM™ (i.e., learning kernel parameters), in which loss spike coding [24]
is conducted on the MNIST-DVS [57] with three scales (i.e. scale4, scale8, and scalel6). (e)-(h) We present the correlation
between the distance and PSNRs by reconstructing images on the DVS reconstruction dataset [55] (i.e. bicycle, night drive,
and sun). (i)-(1) The results for color intensity reconstruction are reported on the color event camera dataset [58] (i.e. city drive,
indoor office, and dancing) using events-to-video algorithm [56].

TABLE 1
QUANTITATIVE EVALUATION ON SPIKE METRICS.

. Compression [24] DVS reconstruction [55] DVS color reconstruction [56]
Methods Learning

PLCC SRCC KRCC RMSE | PLCC SRCC KRCC RMSE | PLCC SRCC KRCC RMSE
KMST [17] No 0.9386 09334 0.7871 0.5545 | 0.7593 0.7584 0.5773 1.8714 | 0.8058 0.7942 0.5906 1.5704
KMST-P [23] No 0.9431 09325 0.7852 0.5343 | 0.7610 0.7730 0.5969 1.8656 | 0.7926 0.8063 0.6215 1.6168
ASTSM No 0.9425 09369 0.7936 0.5336 | 0.8335 0.8038 0.6246 1.5884 | 0.8388 0.8173 0.6429 1.4175
KMST+ Yes 0.9423 09389 0.7965 0.5335 | 0.8697 0.8712 0.7147 13215 | 0.8685 0.8660 0.6936  1.3945
KMST-P+ Yes 0.9436 09391 0.7974 0.5331 | 0.8779 0.8819 0.7263 1.3189 | 0.8631 0.8722 0.7141 1.3816
ASTSM Yes 0.9428 09412 0.8019 0.5329 | 0.9025 0.9230 0.7589 1.2385 | 0.8763 0.8868 0.7172 1.2545

Quantitative evaluation on spike metrics. Specifically,
we first conduct two types of degraded operations including
lossy spike coding [24] on the MNIST-DVS [57] and adding
random noise to the DVS reconstruction dataset [55] and the
color event camera dataset [58]. Then, performance scores are
computed by implementing lossy spike coding [24] and inten-
sity reconstruction [55], [56] for spike streams, respectively.
Finally, we further measure the distance between raw data and

degraded spike streams using our ASTSM™, in which we build
an optimization model to learn kernel parameters and use the
cubic polynomial function in a fitting procedure to provide a
nonlinear mapping between performance scores and the dis-
tance. Fig. 7 depicts that the fitting curves and scatter diagrams
are the correlational relationships between performance scores
and the distance from spike metrics. As illustrated in Fig. 7(a)-
(d), each sample point refers to one testing spike stream,
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TABLE I
TIME COMPLEXITY OF SPIKE METRICS.
Simulating data | MNIST-DVS | DVS rec Color rec
Methods
ACT ANS | ACT ANS | ACT ANS | ACT ANS
KMST [17] |2.623 0.381 [45.63 0.039|135.8 0.035|129.7 0.038
KMST-P [23]|2.317 0.236 |46.27 0.038|137.3 0.038 |126.4 0.039
ASTSM | 0.121 8.325 |2.172 0.692|7.432 0.672|7.811 0.631

and the curves display the trends of compression ratios and
quantified distance for our ASTSM, ASTSM™ and the state-
of-the-art methods [17], [23]. As is shown in Fig. 7(e)-(h),
we also present the correlation between the distances and
the PSNRs, which are computed by measuring reconstruction
images on the DVS reconstruction dataset [55] (i.e. bicycle,
night drive, and sun). Besides, we further report intensity
reconstruction on the color event camera dataset [58] (i.e.
city drive, indoor office, and dancing) using the events-to-
video algorithm [56] in Fig. 7(i)-(h). We can see that scatter
sample points for our ASTSM are closer to the fitting curves in
Fig. 7(c), (g), and (k) than other methodss [17], [23]. Besides,
our ASTSM™, using a learnable kernel parameters strategy,
can further follow the function of performance score p, in
Fig. 7(d), (h), and (I). In other words, our ASTSM, utilizing
the hand-crafted parameters, can obtain better performance
than other metrics [17, 23], and our ASTSM* can become
more flexible and pursue a better performance by learning the
optimized kernel parameters for a known distribution dataset.

Then, the quantitative evaluation results for spike metrics
are given in Table I, we can see that our ASTSM™ can achieve
the best performance in contrast to the state-of-the-art meth-
ods [17], [23] and our three baselines in three representative
datasets. Note that, all spike metrics (i.e., KMST™, KMST-P*,
and our ASTSM™), utilizing the learning kernel parameters,
can better follow the function of performance score ps than
using the hand-crafted kernel parameters according to personal
experience. In particular, our ASTSM, without adopting the
learning kernel parameters, has the greater correlation coeffi-
cients in four evaluation metrics (i.e., PLCC, SRCC, SRCC,
and KRCC) and better reflect the discrimination between raw
data and degraded spike streams than other methods [17], [23].
Note that, our approach has a slight improvement in those
four criteria compared with other methods [17], [23] on lossy
spike coding [24]. In fact, the quantified strategy for spikes is
designed for the temporal domain. Single-neuron spike train
metrics [17], [23] are also applied to measure spike streams
without spatial domain changes. Surprisingly, experimental
results on intensity estimation [55], [58] show the superiority
of our ASTSM over other spike metrics in those four criteria.
The reason for this is because, adding random noise into
asynchronous spikes, the degraded operation changes spatio-
temporal structure in the MSTPPs. This may be caused by the
fact that our ASTSM can better measure the distance between
asynchronous spikes in the MSTPPs, especially involving
spatio-temporal structure changes.

Evaluating time complexity. In order to evaluate time
complexity of our ASTSM compared with the state-of-the-
art methods [17], [23], we take average computation times

(ACT, s) for all sequences and the average number of spikes
processed per second (ANS, Ksp/s) on our provided spike
metric dataset in Table II. All tests are implemented in
Python3 and run on a Windows Server equipped with an
Inter ES CPU (64bits, 2.6GHz) and 256GB of RAM. As
we can see in Table II, our approach is clearly 20x faster
than the works [17], [23]. This is due to the strategy of
introducing a 3D Gaussian kernel to spike cuboid architecture
instead of spike trains. Actually, the computing elements are
significantly decreasing by the sum of spike cuboids rather
than one by one pixel. Meanwhile, we can define a reasonable
window that can maintain performance while reducing time
complexity, which need not all pairwise comparisons if spikes
are far away. In fact, the latency is a crucial characteristic for
many applications requiring fast and real-time reaction, which
includes visual navigation in autonomous driving [10] and ego-
motion estimation in mobile robotics [8], [9], [11]. In short,
Our ASTSM outperforms the state-of-the-art methods and
achieves significant improvement in computational efficiency.

E. Discussion

In fact, an effective and robust spike metric will further
highlight the potential of event-based signal processing to-
wards many practical applications. Here, we further discuss
the major limitation of the proposed approach.

Our approach provides the quantified distance between
asynchronous spikes on a non-normalized set, which depends
on spike numbers, kernel parameters, and time length of spike
stream. Given an unseen distribution for a novel dataset, our
approach fails to build an optimization model to learn the
kernel parameters and only utilizes hand-crafted kernel param-
eters via personal experience. Besides, asynchronous spatio-
temporal spikes from event cameras are sparse and discrete
points rather than traditional structured frames or videos,
which are normalized in quality assessment for conventional
cameras. Although, our ASTSM can obtain impressive perfor-
mance to quantify the distance between raw data and degraded
spike streams. Investigating a robust method to regularize any
number and time length into a uniform formulation is also
interesting and of large applicability for spike metrics. Hence,
it has promising potentials to further explore in the future.

VI. CONCLUSION

This paper proposes an asynchronous spatio-temporal spike
metric (ASTSM) considering both spatio-temporal structural
properties and polarity attribute for event cameras. Our goal
is to illustrate that asynchronous stream in the marked spatio-
temporal point processes (MSTPPs) is possible to be quantified
and measured, and our approach can measure the distance be-
tween raw data and degraded spike streams. The experimental
results demonstrate that the proposed approach outperforms
the state-of-the-art methods and achieves significant improve-
ment in computational efficiency, especially better describing
the changes involving spatio-temporal structure and polarity
attribute. In particular, we believe this work is a major step
towards building an effective spike metric for event-based
signal processing applied to neuromorphic engineering, data
compression, and machine learning to event-based vision.



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[1]

[2]

[4]

[5]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128x 128 120 db 15us
latency asynchronous temporal contrast vision sensor,” IEEE J. Solid-
State Circuits, vol. 43, no. 2, pp. 566-576, 2008.

C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck, “A 240x
180 130 db 3 ps latency global shutter spatiotemporal vision sensor,”
IEEE J. Solid-State Circuits, vol. 49, no. 10, pp. 2333-2341, 2014.

D. P. Moeys, F. Corradi, C. Li, S. A. Bamford, L. Longinotti, F. F.
Voigt, S. Berry, G. Taverni, F. Helmchen, and T. Delbruck, “A sensitive
dynamic and active pixel vision sensor for color or neural imaging
applications,” IEEE Trans. Biomed. Circuits Syst., vol. 12, no. 1, pp.
123-136, 2017.

L. A. Camuiias-Mesa, T. Serrano-Gotarredona, S.-H. Ieng, R. Benosman,
and B. Linares-Barranco, “Event-driven stereo visual tracking algorithm
to solve object occlusion,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 29, no. 9, pp. 4223-4237, 2018.

D. R. Valeiras, X. Clady, S.-H. Ieng, and R. Benosman, “Event-based
line fitting and segment detection using a neuromorphic visual sensor,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 4, pp. 1218-1230,
2018.

A. D. Rast, S. V. Adams, S. Davidson, S. Davies, M. Hopkins,
A. Rowley, A. B. Stokes, T. Wennekers, S. Furber, and A. Cangelosi,
“Behavioral learning in a cognitive neuromorphic robot: an integrative
approach,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 12, pp.
6132-6144, 2018.

G. Cohen, S. Afshar, G. Orchard, J. Tapson, R. Benosman, and A. van
Schaik, “Spatial and temporal downsampling in event-based visual
classification,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 10,
pp- 5030-5044, 2018.

H. Rebecq, G. Gallego, E. Mueggler, and D. Scaramuzza, “Emvs: Event-
based multi-view stereo—3D reconstruction with an event camera in
real-time,” Int. J. Comput. Vis., vol. 126, no. 12, pp. 1394-1414, 2018.
G. Gallego, J. E. Lund, E. Mueggler, H. Rebecq, T. Delbruck, and
D. Scaramuzza, “Event-based, 6-dof camera tracking from photometric
depth maps,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 10,
pp. 2402-2412, 2018.

J. Li, S. Dong, Z. Yu, Y. Tian, and T. Huang, “Event-based vision
enhanced: a joint detection framework in autonomous driving,” in Proc.
IEEE Int. Conf. Multimedia Expo., 2019.

A.Z.Zhu, L. Yuan, K. Chaney, and K. Daniilidis, “Unsupervised event-
based learning of optical flow, depth, and egomotion,” in Proc. IEEE Int.
Conf. Comput. Vis., 2019.

L. Pan, C. Scheerlinck, X. Yu, R. Hartley, M. Liu, and Y. Dai, “Bringing
a blurry frame alive at high frame-rate with an event camera,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2019.

J. Manderscheid, A. Sironi, N. Bourdis, D. Migliore, and V. Lepetit,
“Speed invariant time surface for learning to detect corner points with
event-based cameras,” in Proc. IEEE Int. Conf. Comput. Vis., 2019.

F. Paredes-Valles, K. Y. W. Scheper, and G. C. H. E. De Croon,
“Unsupervised learning of a hierarchical spiking neural network for
optical flow estimation: From events to global motion perception,” I[EEE
Trans. Pattern Anal. Mach. Intell., 2019.

G. Gallego, T. Delbruck, G. Orchard, C. Bartolozzi, B. Taba, A. Censi,
S. Leutenegger, A. J. Davison, J. Conradt, K. Daniilidis et al., “Event-
based vision: A survey,” IEEE Trans. Pattern Anal. Mach. Intell., 2020.
K. A. Boahen, “Point-to-point connectivity between neuromorphic chips
using address events,” IEEE Trans. Circuits Syst. II. Analog Digit. Signal
Process., vol. 47, no. 5, pp. 416-434, 2000.

I. M. Park, S. Seth, A. R. Paiva, L. Li, and J. C. Principe, “Kernel
methods on spike train space for neuroscience: a tutorial,” /EEE Signal
Process. Mag., vol. 30, no. 4, pp. 149-160, 2013.

J. A. Gonzilez, F. J. Rodriguez-Cortés, O. Cronie, and J. Mateu, “Spatio-
temporal point process statistics: A review,” Spatial Statistics, vol. 18,
pp. 505-544, 2016.

J. F. Maya-Vetencourt, D. Ghezzi, M. R. Antognazza, E. Colombo,
M. Mete, P. Feyen, A. Desii, A. Buschiazzo, M. Di Paolo, S. Di Marco
et al., “A fully organic retinal prosthesis restores vision in a rat model of
degenerative blindness,” Nature Materials, vol. 16, no. 6, p. 681, 2017.
N. P. Shah, S. Madugula, E. Chichilnisky, J. Shlens, and Y. Singer,
“Learning a neural response metric for retinal prosthesis,” Proc. Int.
Conf. Learn. Represent., 2018.

J. Aljadeff, B. J. Lansdell, A. L. Fairhall, and D. Kleinfeld, “Analysis of
neuronal spike trains, deconstructed,” Neuron, vol. 91, no. 2, pp. 221-
259, 2016.

T. Tezuka, “Multineuron spike train analysis with r-convolution linear
combination kernel,” Neural Netw., vol. 102, pp. 67-77, 2018.

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

(33]

[34]

(35]

[36]

[37]

(38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

xi

S. Dong, Z. Bi, Y. Tian, and T. Huang, “Spike coding for dynamic vision
sensor in intelligent driving,” IEEE Internet Things J., vol. 6, no. 1, pp.
60-71, 2019.

Y. Fu, J. Li, S. Dong, Y. Tian, and T. Huang, “Spike coding: Towards
lossy compression for dynamic vision sensors,” in Proc. IEEE Data
Compression Conf., 2019.

D. Neil, M. Pfeiffer, and S.-C. Liu, “Phased Istm: Accelerating recurrent
network training for long or event-based sequences,” in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 3882-3890.

S. B. Shrestha and G. Orchard, “Slayer: Spike layer error reassignment
in time,” in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 1419-1428.
Y. Sekikawa, K. Hara, and H. Saito, “Eventnet: Asynchronous recursive
event processing,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2019, pp. 3887-3896.

D. Gehrig, A. Loquercio, K. G. Derpanis, and D. Scaramuzza, “End-to-
end learning of representations for asynchronous event-based data,” in
Proc. IEEE Int. Conf. Comput. Vis., 2019.

S. Xiao, M. Farajtabar, X. Ye, J. Yan, L. Song, and H. Zha, “Wasserstein
learning of deep generative point process models,” in Proc. Adv. Neural
Inf. Process. Syst., 2017, pp. 3247-3257.

S. Xiao, H. Xu, J. Yan, M. Farajtabar, X. Yang, L. Song, and H. Zha,
“Learning conditional generative models for temporal point processes,”
in Proc. AAAI Conf. on Artificial Intell., 2018.

J. Yan, X. Liu, L. Shi, C. Li, and H. Zha, “Improving maximum
likelihood estimation of temporal point process via discriminative and
adversarial learning.” in Proc. Int. Joint Conf. Artificial Intell., 2018, pp.
2948-2954.

S. Xiao, J. Yan, M. Farajtabar, L. Song, X. Yang, and H. Zha, “Learning
time series associated event sequences with recurrent point process
networks,” IEEE Trans. Neural Netw. Learn. Syst., 2019.

G. Gallego, M. Gehrig, and D. Scaramuzza, “Focus is all you need: Loss
functions for event-based vision,” in Proc. IEEE Int. Conf. Comput. Vis.,
2019, pp. 12280-12289.

M. Pfeiffer and T. Pfeil, “Deep learning with spiking neurons: Oppor-
tunities and challenges,” Frontiers in Neuroscience, vol. 12, 2018.

A. 1. Maqueda, A. Loquercio, G. Gallego, N. Garcia, and D. Scaramuzza,
“Event-based vision meets deep learning on steering prediction for self-
driving cars,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018,
pp. 5419-5427.

X. Lagorce, G. Orchard, F. Galluppi, B. E. Shi, and R. B. Benosman,
“Hots: a hierarchy of event-based time-surfaces for pattern recognition,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 7, pp. 1346-1359,
2016.

A. Sironi, M. Brambilla, N. Bourdis, X. Lagorce, and R. Benosman,
“Hats: Histograms of averaged time surfaces for robust event-based ob-
ject classification,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2018, pp. 1731-1740.

M. C. van Rossum, “A novel spike distance,” Neural Computat., vol. 13,
no. 4, pp. 751-763, 2001.

A. R. Paiva, 1. Park, and J. C. Principe, “A reproducing kernel hilbert
space framework for spike train signal processing,” Neural Computat.,
vol. 21, no. 2, p. 424, 2009.

N. Fisher and A. Banerjee, “A novel kernel for learning a neuron model
from spike train data,” in Proc. Adv. Neural Inf. Process. Syst., 2010.
C. Houghton and K. Sen, “A new multineuron spike train metric,” Neural
Computat., vol. 20, no. 6, pp. 1495-1511, 2008.

A. J. Brockmeier, J. S. Choi, E. G. Kriminger, J. T. Francis, and J. C.
Principe, “Neural decoding with kernel-based metric learning.” Neural
Computat., vol. 26, no. 6, pp. 1080-1107, 2014.

E. Torre, C. Canova, M. Denker, G. Gerstein, M. Helias, and S. GraN,
“Asset: Analysis of sequences of synchronous events in massively
parallel spike trains,” Plos Comput. Biology., vol. 12, no. 7, p. €1004939,
2016.

J. V. Toups, J.-M. Fellous, P. J. Thomas, T. J. Sejnowski, and P. H.
Tiesinga, “Finding the event structure of neuronal spike trains,” Neural
Computat., vol. 23, no. 9, p. 2169, 2011.

A. Ignacio and C. Margarita, “Asynchronous corner detection and
tracking for event cameras in real-time,” IEEE Robot. Autom. Lett., 2018.
C. Posch, T. Serrano-Gotarredona, B. Linares-Barranco, and T. Del-
bruck, “Retinomorphic event-based vision sensors: Bioinspired cameras
with spiking output,” Proceedings of the IEEE, vol. 102, no. 10, pp.
1470-1484, 2014.

R. Kempter, W. Gerstner, and J. L. V. Hemmen, “Spike-based compared
to rate-based hebbian learning,” in Proc. Adv. Neural Inf. Process. Syst.,
1999.



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

(58]

[59]

[60]

J. P. Cunningham, M. Y. Byron, K. V. Shenoy, and M. Sahani, “Inferring
neural firing rates from spike trains using gaussian processes,” in Proc.
Adv. Neural Inf. Process. Syst., 2008, pp. 329-336.

A. Khodamoradi and R. Kastner, “O(n)-space spatiotemporal filter for
reducing noise in neuromorphic vision sensors,” IEEE Trans. Emerging
Topics Comput., vol. PP, no. 99, pp. 1-1, 2018.

C. Posch, D. Matolin, and R. Wohlgenannt, “A qvga 143 db dynamic
range frame-free pwm image sensor with lossless pixel-level video
compression and time-domain cds,” IEEE J. Solid-State Circuits, vol. 46,
no. 1, pp. 259-275, 2011.

R. Ghosh, A. Gupta, A. Nakagawa, A. Soares, and N. Thakor, “Spa-
tiotemporal filtering for event-based action recognition,” arXiv, 2019.
R. Ghosh, A. Gupta, S. Tang, A. Soares, and N. Thakor, “Spatiotemporal
feature learning for event-based vision,” arXiv, 2019.

R. F. Teixeira and N. J. Leite, “A new framework for quality assessment
of high-resolution fingerprint images,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 39, no. 10, pp. 1905-1917, 2017.

M. Gonen and E. Alpaydin, “Multiple kernel learning algorithms,” J.
Mach. Learn. Research, vol. 12, no. Jul, pp. 2211-2268, 2011.

C. Scheerlinck, N. Barnes, and R. Mahony, “Continuous-time intensity
estimation using event cameras,” in Proc. Asian Conf. Comput. Vis.
Springer, 2018.

H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza, “Events-to-video:
Bringing modern computer vision to event cameras,” in Proc. I[EEE
Conf. Comput. Vis. Pattern Recognit., 2019, pp. 3857-3866.

T. Serrano-Gotarredona and B. Linares-Barranco, “The MNIST-DVS
database,” http://www2.imsecnm.csic.es/caviar/MNISTDVS.html, 2014.
C. Scheerlinck, H. Rebecq, T. Stoffregen, N. Barnes, R. Mahony, and
D. Scaramuzza, “Ced: Color event camera dataset,” in IEEE Conf.
Comput. Vis. Pattern Recog. Worksh., 2019.

S. Wang, K. Gu, X. Zhang, W. Lin, S. Ma, and W. Gao, “Reduced-
reference quality assessment of screen content images,” IEEE Trans.
Circuits Syst. Video Technol., vol. 28, no. 1, pp. 1-14, 2018.

Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli et al., “Image
quality assessment: from error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp. 600-612, 2004.

Jianing Li is currently a PH.D. student in the Na-
tional Engineering Laboratory for Video Technology,
School of Electronics Engineering and Computer
Science, Peking University, Beijing, China.

He received a Lixin Tang Scholarship from the
Chongqing University in 2016. His research inter-
ests include neuromorphic vision, machine learning,

neuromorphic engineering and spatio-temporal point
J  processes.

Yihua Fu received the B.S. degree in the School of
Microeletronics, Tianjin University, Tianjin, China,
in 2017. She is currently working towards the mas-
ter’s degree at the school of Electronic and Computer
i Engineering, Peking University, Shenzhen, China.

Her research interests include data mining, event-
based signal processing, machine learning and neu-
romorphic engineering.

Siwei Dong received the B.S. degree from the
College of Computer Science, Chongqing Univer-
sity, Chongging, China in 2012, and the Ph.D.
degree from the National Engineering Laboratory
for Video Technology, School of Electronics Engi-
neering and Computer Science, Peking University,
Beijing, China in 2019.

His current research interests include video coding
and neuromorphic computing.

Zhaofei Yu received the B.S. degree from the Hong
Shen Honors School, College of Optoelectronic En-
gineering, Chongqing University, Chongqing, China
in 2012, and the Ph.D. degree from the Automation
Department, Tsinghua University, Beijing, China in
2017.

He is a Post-Doctoral Fellow with the Na-
tional Engineering Laboratory of Video Technology,
School of Electronics Engineering and Computer
Science, Peking University, Beijing. His current in-

\ —a
terests include artificial intelligence, brain-inspired

computing, and computational neuroscience.

Tiejun Huang (M’01-SM’12) is a professor with

the Department of Computer Science, School of

EE&CS, Peking University, and the Director of

the Beijing Academy for Artificial Intelligence. His

* i~ research areas include visual information processing

and neuromorphic computing.

He published two books, 200+ peer-reviewed pa-

4 pers on leading journals and conferences, holds 50+

granted patents, and is the co-editor of 4 ISO/IEC

. standards, 5 National standards of China and 4

IEEE standards. Professor Huang received the Ph. D.

degree in pattern recognition and intelligent system from Huazhong (Central

China) University of Science and Technology in 1998, was awarded the

Distinguished Young Scholar by the National Natural Science Foundation

of China in 2014, the Distinguished Professor of the Chang Jiang Scholars

Program by the Ministry of Education of China in 2015. Professor Huang

received National Award for Science and Technology of China (Tier-2) for

three times. He is a Fellow of CAAI, CCF, the secretary general of the

Artificial Intelligence Industry Technology Innovation Alliance, and vice chair
of the China National General Group on Al Standardization.

Yonghong Tian (S’00-M’01-SM’12) is currently
a Boya Distinguished Professor with the De-
partment of Computer Science and Technology,
Peking University, China, and is also the deputy
director of Artificial Intelligence Research Cen-
ter, PengCheng Laboratory, Shenzhen, China. His
research interests include neuromorphic vision,
brain-inspired computation and multimedia big
data.

He is the author or coauthor of over 200 tech-
nical articles in refereed journals such as IEEE
TPAMI/TNNLS/TIP/TMM/TCSVT/TKDE/TPDS, ACM CSUR/TOIS/TOMM
and conferences such as Neur[PS/CVPR/ICCV/AAAI/ACMMM/WWW. Prof.
Tian was/is an Associate Editor of IEEE TCSVT (2018.1-), IEEE TMM
(2014.8-2018.8), IEEE Multimedia Mag. (2018.1-), and IEEE Access (2017.1-
). He co-initiated IEEE Int’l Conf. on Multimedia Big Data (BigMM) and
served as the TPC Co-chair of BigMM 2015, and aslo served as the Technical
Program Co-chair of IEEE ICME 2015, IEEE ISM 2015 and IEEE MIPR
2018/2019, and General Co-chair of IEEE MIPR 2020 and ICME2021. He is
the steering member of IEEE ICME (2018-) and IEEE BigMM (2015-), and
is a TPC Member of more than ten conferences such as CVPR, ICCV, ACM
KDD, AAAI, ACM MM and ECCV. He was the recipient of the Chinese
National Science Foundation for Distinguished Young Scholars in 2018, two
National Science and Technology Awards and three ministerial-level awards
in China, and obtained the 2015 EURASIP Best Paper Award for Journal on
Image and Video Processing, and the best paper award of IEEE BigMM 2018.
He is a senior member of IEEE, CIE and CCF, a member of ACM.




	Introduction
	RELATED WORK
	Single-Neuron Spike Train Metrics
	Multi-Neuron Spike Trains Metrics

	Theoretical Foundation
	Marked Spatio-Temporal Spikes
	Problem Statement

	OUR APPROACH
	Asynchronous Spatio-Temporal Spike Metric
	Learning Kernel Parameters

	EXPERIMENTS AND DISCUSSIONS
	Experimental Settings
	Validation Issues
	Effective Test
	Scalability Test
	Discussion

	Conclusion
	References
	Biographies
	Jianing Li
	Yihua Fu
	Siwei Dong
	Zhaofei Yu
	Tiejun Huang (M'01-SM'12)
	Yonghong Tian (S'00-M'01-SM'12)
	Dataset Introduction
	Validation Experiment
	Evaluation Experiment
	Theoretical Proof
	Discussion of Parameters


