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ESP18: Fundamentals of Event Senor Signal Processing

 1 . Can we lay a practical mathematical foundation that allows deriving efficient event-
driven signal processing algorithms, analogous to the Z-transform of DSP?

 2. Can we find better noise reduction (NR) algorithms than existing ones?

 3. Can we find general methods for adaptively controlling sensor parameters like 
threshold, bandwidth, and refractory period?

 4. Can we find better input representations for event cameras data for CNN?

 5. What can we do to combine DVS events with color vision?
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Motivation

 Sparse and asynchronous spatial-temporal events
 High temporal resolution
 Low spatial resolution

x
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Vision algorithms

Classification

Moving detection

Moving tracking

Stereo vision

Linking

?
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Overview

 Introduction
 Event-based sensors
 Related works

 Image representations
 Steering prediction, CVPR 2018

 Time surface representations
 HOTS, PAMI 2017
 HATS, CVPR 2018

 Feature representations
 Bag of Events,  TNNLS 2017

 End-to-end SNN
 STDP,  TNNLS 2014

 Discussion
 Better input representations for CNN
 Event-based sensors future
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Event-based sensors

 Milestones

[1] Retinomorphic Event-Based Vision Sensors: Bioinspired Cameras With Spiking Output, C Posch. Proceedings of IEEE, 2014. 

Fig.1 The time diagram for vision devices [1]



9

Event-based sensors

 Bioinspired vision

Fig.2 Three-layer model of silicon retina and DVS [1] Fig.3 Illustration of DVS output [1]

The advantage The disadvantage

[1] Retinomorphic Event-Based Vision Sensors: Bioinspired Cameras With Spiking Output, C Posch. Proceedings of IEEE, 2014. 

(1) High temporal resolution
(2) Low redundancy
(3) High dynamic range

(1) Sensitive to noise
(2) Low spatial resolution
(3) Spatio-temporal sparse
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Event-based sensors

 Cameras
Camera DVS ATIS DAVIS Celex

Function Dynamic event Dynamic event + 
Intensity

Dynamic event + 
image capture

Dynamic event + 
image capture

First release year 2005 2008 2013 2017

Fixed Pattern noise 2.1% 0.25% intensity 0.5%APS, DVS 3.5% 0.38%

Power consumption 24mW 175mW (high activity)
50mW(low activity)

14mW(high activity)
5mW(low activity)

700mW

Array size 128*128 304*240 240*180 1280*720

Pixel Size(um2) 40*40 30*30 18.5*18.5 30*30

Latency 15us@1klux 4us@1klux 3us@1klux 6us@1klux

Dynamic range 120dB 125dB 130dB DVS
51dB APS

120dB

Commercialization Commercialized
(DVS128)

Commercialized
(ATIS304)

Commercialized
(DAVIS240)

Prepared

Tab.1 Papers of event-based vision in related topics [2,3]

[2] A Review of Bioinspired Vision Sensors and Their Applications, D  Cho et al. Sensors & Materials , 2015. 
[3] A Dynamic vision with direct logarithmic output and full-frame picture-on-demand, M Guo. PHD, 2016. 
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Event-based sensors

 DVS VS standard camera

Fig.4  Event-based and frame-based cameras in applications
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Event-based sensors

 Embedded neuromorphic chip
 To mimic neural network architecture of biological brains
 Low-power

TureNorth [4]

IBM
SpiNNaker [5]

Uni. Manchester
Loihi [6]

Intel

Fig.5  Bioinspired neuromorphic chips

[4] A million spiking-neuron integrated circuit with a scalable communication network and interface, Paul A. Merolla et.al, Science, 2014. 
[5] The SpiNNaker Project, Steve B. Furber et.al,  The Proceedings of IEEE, 2014.
[6]  Loihi: A neuromorphic manycore processor with on-chip learning, Mike Davies, IEEE micro, 2018.
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Related works

 Event-based vision
 Research papers in recent years
 Related topics, mainly in vision applications

Tab.2 Papers of event-based vision in recent years Tab.3 Papers of event-based vision in related topics

Tips: all statistical papers mainly are about DVS, ATIS and DAVIS. 
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Event-based vision meet deep learning on 
steering prediction for self-driving cars

Ana I. Maqueda, Antonio Loquercio, Guillermo Gallego, Narciso Garcia, 
Davide Scaramuzza *

CVPR, 2018
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1 Introduction

 Motivation
 Challenging illumination conditions
 Fast motion

Fig.1 Steering angle performance on 
frames and event camera.

 Contributions
 Deep learning to event-based 

vison on regression task
 Show that possible transfer 

learning from pre-trained CNN
 Outperforming state-of-art systems
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2 Framework

 Methodology
 Event-to-Frame conversation
 Network architecture

Fig.2 The framework of steering angle prediction based on event-based camera.
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3 Integration time for events

 Performance metrics
 RMSE
 EVA

Fig.3 Events collected for different durations of the interval.

Fig.4 The relative error in steering angle prediction Tab.1 Comparison performances for different integration times
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4 Experiments

Tab.2  Results for day subset

Tab.3  Results for day_sun subset

Tab.4  Results for evening subset

Tab.5  Results for night subset

 Datasets
 DDD17 [1]

[1] DDD17: End-to-end DAVIS driving dataset, Jonathan Binas et.al. ICML workshops, 2017. 

Fig.5 DDD17 dataset for four lighting conditions
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5  Outlook

 1 Adaptive integration time to convert into images?

 2 Generating feature maps based on SNN?

 3 Joint frame-based and event-based in predicting steering angle?

 4 How to use high temporal information?
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HATS: histograms of averaged time surfaces for 
robust event-based object classification [1]

Amos Sironi, Manuele Brambilla, Nicolas Bourdis, Xavier Lagorce, Ryad B. Benosman *

CVPR, 2018

[1] HOTS: A hierarchy of event-based time-surfaces for pattern recognition. Xavier Lagorce et.al . PAMI 2017.



23

 Time surface
 Event streams

 Time context

 Computing time surface

Fig.1 Time surface from the spatiotemporal events

1 Related works



24

1 Related works

 Feature representations
 Online clustering of time-surfaces
 Extracting features

Tab.1 Online clustering of event streams based on time-surfaces
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1 Related works

 Framework

Fig.2 The proposed hierarchical framework based on time-surfaces
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 Motivation
 Overcoming noisy events
 Real-world event-based dataset 

 Contribution
 Local memory time surfaces
 HATS—Histograms of averaged time surfaces
 N-CARS dataset

Fig.3 N-CARS dataset

Fig.4 Time surface computation around an event, in presence of 
noise. (a)time surfaces; (b)local memory time surfaces; (c)HATS

2 Introduction
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3 Method

Fig.5 Overview of the proposed architecture. (a)Cells C; (b)Local memory time surface computation
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3 Method

 Algorithm

Tab.2 The algorithm of histograms average time-surfaces  
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4 Experiments

 Classification accuracies
 database

 Complexity analysis
 N-CARS

Table 1 Compared methods for database

Table 2 Complexity analysis for N-CARS
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5  Outlook

 1 Decreasing complexity, rather than based on single spike?

 2 Local feature representations?

 3 End-to-end architecture used in spatial-temporal spike stream?
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Bag of events: an efficient probability-based feature 
extraction method for AER image sensors

Xi Peng, Bo Zhao, Rui Yan, Huajin Tang *, Zhang Yi

TNNLS, 2017
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1 Introduction

 Challenges
 A sequence of events
 Asynchronous and sparse

 Contribution
 BOE—feature extraction method based on probability theory
 Online learning algorithm
 Simple and competitive performance

(a) Conventional camera (b) DVS

Fig.3 Event camera VS conventional camera.
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2 Method

 Framework

Generating bags

Fig.2 Architecture of the proposed system
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2 Feature extracting

 Bag of events
 LIF neural model

 Event-based feature extracting
 Segments

 Bag of events

 Joint probability distribution

 Feature representations

Fig.3 Dynamics of an LIF neuron

Fig.4 The BOE features
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3 Experiments

 Classification accuracies
 MNIST-DVS

 Complexity analysis
 Feature extraction and classification

Tab. 1 Compared methods for MNIST-DVS database

BOE: 75.09% Zhao et.al[1]: 73.35% Chen et.al[2]: 61.23%

[1] Feed-forward categorization on AER motion events using cortex-like features in a spiking neural network, Bo Zhao et.al, TNNLS 2015.
[2] Efficient feedforward categorization of objects and human postures with address-event image sensors, Shoushun Chen et.al, PAMI, 2012. 

Tab. 2 Compared methods for complexity analysis
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4 Outlook

 1 Temporal information can be feature representations?

 2 Local feature representations?

 3 End-to-end SNN used in spatial-temporal spike stream?
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Unsupervised learning of digit recognition 
using spike-timing-dependent plasticity

Peter U. Diehl *, and Matthew Cook

TNNLS, 2014
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1 Introduction

 Leaky-integrate-and-fire, LIF
 Firing model

θ

 

 I
U

Fig.1 Leaky-integrate-and-fire model
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1 Introduction

 Spike-timing dependent plasticity, STDP
 Synapse plasticity

 Synapse weight

Fig.2 e-STDP learning function
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2 Method

 Network architecture
 STDP called unsupervised learning
 How to use labels

Fig.3 Two layers network

Possion-spike with 
firing rates

STDP learning rule

One to one connections

Connected all except one
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2 Method

 Neuron and synapse model
 LIF model, the membrane voltage V [1]

 Learning rule
 Weight change

[1] Brian2 link: http://brian2.readthedocs.io/en/stable/index.html

http://brian2.readthedocs.io/en/stable/index.html


44

2 Method

 Train
 Assigned excitatory neurons

Fig.4 2D receptive fields

(a) 4*10 excitatory neurons (b) 10*10 excitatory neurons(400)

28*28 pixels（weights）

(c) 7*7 excitatory neurons [2]

Convolutional STDP

[2] Deep spiking convolutional neural network trained with unsupervised spike timing dependent plasticity. Chankyu Lee., TCDS, 2018.
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3 Experiments

 Results

Tab.1 Classification accuracy of SNN on MNIST

Event-based data?
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4 Extended works

[3] Unsupervised learning of digit recognition using spike-timing-dependent plasticity, Peter U. Diehl et. al, TNNLS 2014.
[4] HATS: Histograms of averaged time surfaces for robust event-based object classification, Amos Sironi, et. al, CVPR 2018. 

 Experiments
 DVS-MNIST dataset

 Results comparison

Fig.6  event streamsFig.5  N-MNIST dataset

Methods Author Now work
STDP [NNLS, 2015][3] - 0.913
HATS [CVPR, 2018][4] 0.984 0.972

Tab.2  Event-based classification on N-MNIST dataset

Rate-based coding
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5  Outlook

 1 No Brian2 , No Nest Simulation platform, but in deep 
Architecture, such as  Pytorch [5]?

 2 End-to-end SNN can be applied in complex event-based vision 
tasks?

 3 Sparse lattice networks [6] used in spatial-temporal spike stream?

[5] Direct training for spiking neural networks: faster, larger, better, Yujie Wu et. al, arXiv 2018.
[6] Hnnge Su et.al . SPLATNet: Sparse Lattice Netorks for Point Cloud Processing. Hang su et.al,  CVPR 2018.
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6 Summary

Representations Disadvantages Advantages

Image Lack of temporal 
information Deep learning

Time surface Complexity & Local feature Temporal information

Feature Multi-steps Complex vision tasks

End-to-end SNNs Neural model + Framework Temporal information

End-to-end CNNs Lack of datasets
Waiting … Complex vision tasks

Tab.3 Representations for event-based camera data
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Discussion

 Better input representations for CNN
 Point process, such as PointNet [1]

 Lack of training dataset

[1] PointNet++: Deep hierarchical feature learning on point sets in a metric space. Charles R. Qi., NIPS, 2017. 

 The future of event-based cameras
 Sparse and asynchronous events
 Point process

x

y
t



Thanks！

Q&A?
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