

Telluride 2018 Neuromorphic Cognition Engineering Workshop July 1-20, 2018. Telluride, Colorado, USA

Telluride 2018 Neuromorphic Cognition Engineering Workshop

July 1-20, 2018. Telluride, Colorado, USA

Topic Areas

AUD<u>18: Prediction and</u> Surprise in Natural Sound Processing: Comparing DNNs to the human brain

BRD<u>18: Building</u> <u>applications with Braindrop</u> <u>—a novel neuromorphic chip</u> <u>for embodied perception</u> <u>and action</u>

CAL18: Cognitive Agents

ESP<u>18: Fundamentals of</u> Event Sensor Signal Processing

Telluride 2018 Neuromorphic Cognition Engineering Workshop

July 1-20, 2018. Telluride, Colorado, USA

ESP18: Fundamentals of Event Senor Signal Processing

- 1. Can we lay a practical mathematical foundation that allows deriving efficient eventdriven signal processing algorithms, analogous to the Z-transform of DSP?
 - 2. Can we find better **noise reduction (NR)** algorithms than existing ones?
- 3. Can we find general methods for adaptively controlling sensor parameters like threshold, bandwidth, and refractory period?

4. Can we find **better input representations** for event cameras data for CNN?

5. What can we do to combine DVS events with **color vision**?

Tobi Delbruck ETH

Ryad Benosman Garrick Orchard UMPC NUS

Cornelia Fermuller

Univ.Maryland

LANS

UCL.

David Mascarenas Yiannis Andreopoulus

Francisco

Univ, Grenada

Alex Zhu Univ, Penn.

How to find better input representations for event-based camera data?

Jianing Li

Spiking Computing Group

lijianing@pku.edu.cn

Sep. 28, 2018

Motivation

Sparse and asynchronous spatial-temporal events

- High temporal resolution
- Low spatial resolution

Overview

Introduction

- Event-based sensors
- Related works

Image representations

Steering prediction, CVPR 2018

Time surface representations

- HOTS, PAMI 2017
- HATS, CVPR 2018
- Feature representations
 - Bag of Events, TNNLS 2017
- End-to-end SNN
 - STDP, TNNLS 2014

Discussion

- Better input representations for CNN
- Event-based sensors future

Overview

Introduction

- Event-based sensors
- Related works
- Image representations
 - Steering prediction, CVPR 2018
- **Time surface**
 - HOTS, PAMI 2017
 - HATS, CVPR 2018
- **Feature representations**
 - Bag of Events, TNNLS 2017
- End-to-end SNN
 - **STDP, TNNLS 2014**
- **Discussion**
 - Better input representations for CNN
 - Event-based sensors future

Milestones

Fig.1 The time diagram for vision devices ^[1]

Bioinspired vision

The advantage

- (1) High temporal resolution
- (2) <u>Low redundancy</u>
- (3) High dynamic range

- (1) <u>Sensitive to noise</u>
- (2) Low spatial resolution
- (3) Spatio-temporal sparse

Fig.2 Three-layer model of silicon retina and DVS^[1]

Fig.3 Illustration of DVS output ^[1]

Cameras

DVS	ATIS	DAVIS	Celex
Dynamic event	Dynamic event + Intensity	Dynamic event + image capture	Dynamic event + image capture
2005	2008	2013	2017
2.1%	0.25% intensity	0.5% APS, DVS 3.5%	0.38%
24mW	175mW (high activity) 50mW(low activity)	14mW(high activity) 5mW(low activity)	700mW
128*128	304*240	240*180	1280*720
40*40	30*30	18.5*18.5	30*30
15us@1klux	4us@1klux	3us@1klux	6us@1klux
120dB	125dB	130dB DVS 51dB APS	120dB
Commercialized (DVS128)	Commercialized (ATIS304)	Commercialized (DAVIS240)	Prepared
	DVS Dynamic event 2005 2.1% 2.1% 24mW 128*128 40*40 15us@1klux 120dB Commercialized (DVS128)	DVSATISDynamic eventDynamic event + Intensity200520082.1%0.25% intensity24mW175mW (high activity) 50mW(low activity)128*128304*24040*4030*3015us@1klux4us@1klux120dB125dBCommercialized (DVS128)Commercialized (ATIS304)	DVSATISDAVISDynamic eventDynamic event + IntensityDynamic event + image capture2005200820132.1%0.25% intensity0.5% APS, DVS 3.5%24mW175mW (high activity) 50mW(low activity)14mW(high activity) 5mW(low activity)128*128304*240240*18040*4030*3018.5*18.515us@1klux4us@1klux3us@1klux120dB125dB130dB DVS 51dB APSCommercialized (DVS128)Commercialized (ATIS304)Commercialized (DAVIS240)

Tab.1 Papers of event-based vision in related topics ^[2,3]

[2] A Review of Bioinspired Vision Sensors and Their Applications, D Cho et al. *Sensors & Materials*, 2015.
[3] A Dynamic vision with direct logarithmic output and full-frame picture-on-demand, M Guo. *PHD*, 2016.

DVS VS standard camera

Fig.4 Event-based and frame-based cameras in applications

Embedded neuromorphic chip

- To mimic neural network architecture of biological brains
- Low-power

TureNorth ^[4] IBM

SpiNNaker ^[5] Uni. Manchester

Loihi ^[6] Intel

Fig.5 Bioinspired neuromorphic chips

[4] A million spiking-neuron integrated circuit with a scalable communication network and interface, Paul A. Merolla et.al, Science, 2014.

[5] The SpiNNaker Project, Steve B. Furber et.al, *The Proceedings of IEEE*, 2014.

[6] Loihi: A neuromorphic manycore processor with on-chip learning, Mike Davies, *IEEE micro*, 2018.

Tab.2 Papers of event-based vision in recent years

Related works

Event-based vision

- Research papers in recent years
- Related topics, mainly in vision applications

Paper in related topics

Tab.3 Papers of event-based vision in related topics

Overview

- Introduction
 - Event-based sensors
 - Related works

Image representations

- Steering prediction, CVPR 2018
- **Time surface representations**
 - HOTS, PAMI 2017
 - HATS, CVPR 2018
- **Feature representations**
 - Bag of Events, TNNLS 2017
- End-to-end SNN
 - **STDP, TNNLS 2014**
 - Discussion
 - Better input representations for CNN
 - Event-based sensors future

Event-based vision meet deep learning on steering prediction for self-driving cars

Ana I. Maqueda, Antonio Loquercio, Guillermo Gallego, Narciso Garcia, Davide Scaramuzza *

CVPR, 2018

1 Introduction

Motivation

- Challenging illumination conditions
- Fast motion

Contributions

- Deep learning to event-based vison on regression task
- Show that possible transfer learning from pre-trained CNN
- Outperforming state-of-art systems

Fig.1 Steering angle performance on frames and event camera.

2 Framework

Methodology

- Event-to-Frame conversation
- Network architecture

Fig.2 The framework of steering angle prediction based on event-based camera.

3 Integration time for events

Performance metrics

RMSE $EVA \doteq 1 - \frac{Var(\hat{\alpha} - \alpha)}{Var(\alpha)}.$ RMSE $\doteq \sqrt{\frac{1}{N} \sum_{j=1}^{N} (\hat{\alpha}_j - \alpha_j)^2}.$ EVA

(a) 10 ms

(c) 50 ms

(e) 200 ms

Fig.3 Events collected for different durations of the interval.

Fig.4 The relative error in steering angle prediction

Integration time T	EVA	RMSE
10 ms	0.790	11.53°
25 ms	0.792	10.42°
50 ms	0.805	9.47 °
100 ms	0.634	13.43°
200 ms	0.457	15.87°

Tab.1 Comparison performances for different integration times

4 Experiments

Datasets

DDD1		
Grayscale frames	Difference of grayscale frames	Event frames
day		Reason of the
day_sun		
evening		
night		

Fig.5 DDD17 dataset for four lighting conditions

[1] DDD17: End-to-end DAVIS driving dataset, Jonathan Binas et.al. *ICML workshops*, 2017.

	Gra	yscale	Grays	cale diff.	Events		
Architecture	EVA	RMSE	EVA	RMSE	EVA	RMSE	
ResNet18	0.047	4.57°	0.329	3.65°	0.551	2.99°	
ResNet50	0.449	3.31°	0.653	2.62°	0.728	2.33°	

Tab.2 Results for day subset

	Gra	yscale	Grays	cale diff.	Events		
Architecture	EVA	RMSE	EVA	RMSE	EVA	RMSE	
ResNet18 ResNet50	0.125 0.383	20.07° 16.85°	0.729 0.802	11.53° 9.62°	0.742 0.805	10.87° 9.47°	

Tab.3 Results for day_sun subset

	Gra	yscale	Grays	cale diff.	Events		
Architecture	EVA	RMSE	EVA	RMSE	EVA	RMSE	
ResNet18	0.172	7.23°	0.183	7.19°	0.518	5.45°	
ResNet50	0.360	6.37°	0.418	6.07°	0.602	5.01°	

Tab.4 Results for evening subset

	Gra	yscale	Grays	cale diff.	Events		
Architecture	EVA	RMSE	EVA	RMSE	EVA	RMSE	
ResNet18	0.181	6.96°	0.449	5.73°	0.654	4.51°	
ResNet50	0.418	5.88°	0.621	4.73°	0.753	3.82°	

Tab.5 Results for night subset

5 Outlook

1 Adaptive integration time to convert into images?

- **2** Generating feature maps based on **SNN**?
- **3** Joint frame-based and event-based in predicting steering angle?
- **4** How to use high temporal information?

Overview

Introduction

. .

- Event-based sensors
- Related works
- Image representations
 - Steering prediction, CVPR 2018
- □ Time surface representations
 - HOTS, PAMI 2017
 - HATS, CVPR 2018
- **Feature representations**
 - Bag of Events, TNNLS 2017
- End-to-end SNN
 - **STDP, TNNLS 2014**
- Discussion
 - Better input representations for CNN
 - Event-based sensors future

HATS: histograms of averaged time surfaces for robust event-based object classification ^[1]

Amos Sironi, Manuele Brambilla, Nicolas Bourdis, Xavier Lagorce, Ryad B. Benosman *

CVPR, 2018

[1] HOTS: A hierarchy of event-based time-surfaces for pattern recognition. Xavier Lagorce et.al . PAMI 2017.

1 Related works

Time surface

П

Event streams

$$ev_i = [\mathbf{x_i}, t_i, p_i]^T, \quad i \in \mathbb{N}$$

Time context

$$\mathcal{T}_{i}(\mathbf{u}, p) = \max_{j \leq i} \left\{ t_{j} \, | \, \mathbf{x}_{j} = (\mathbf{x}_{i} + \mathbf{u}), \, p_{j} = p \right\}$$

Computing time surface

$$\mathcal{S}_i(\mathbf{u}, p) = e^{-(t_i - \mathcal{T}_i(\mathbf{u}, p))/\tau}.$$

Fig.1 Time surface from the spatiotemporal events

1 Related works

Feature representations

- Online clustering of time-surfaces
- Extracting features

 $feat_i = [x_i, y_i, t_i, k_i]^T,$

Algorithm 1. Online Clustering of Time-Surfaces

Ensure: *N* cluster centers C_n , $n \in [\![1, N]\!]$ Use the first *N* events' time-surfaces as initial values for C_n , $n \in [\![1, N]\!]$ Initialize $p_n \leftarrow 1$, $n \in [\![1, N]\!]$ for every incoming event ev_i do Compute time-surface S_i Find closest cluster center C_k $\alpha \leftarrow 0.01/(1 + p_k/20000)$ $\beta \leftarrow C_k \cdot S_i/(||C_k|| \cdot ||S_i||)$ $C_k \leftarrow C_k + \alpha(S - \beta C_k)$ $p_k \leftarrow p_k + 1$ end for

Tab.1 Online clustering of event streams based on time-surfaces

1 Related works

Framework

Fig.2 The proposed hierarchical framework based on time-surfaces

2 Introduction

Motivation

- Overcoming <u>noisy events</u>
- Real-world event-based dataset

Contribution

- Local memory time surfaces
- HATS—Histograms of averaged time surfaces
- N-CARS dataset

Fig.4 Time surface computation around an event, in presence of noise. (a)time surfaces; (b)local memory time surfaces; (c)HATS

Local memory time surfaces

Temporal window Δt

$$\mathcal{T}_{e_i}(\mathbf{z}, q) = \begin{cases} \sum_{e_j \in \mathcal{N}_{(\mathbf{z}, q)}(e_i)} e^{-\frac{t_i - t_j}{\tau}} & \text{if } p_i = q \\ 0 & \text{otherwise}, \end{cases}$$

$$\mathcal{N}_{(\mathbf{z},q)}(e_i) = \{e_j : \mathbf{x}_j = \mathbf{x}_i + \mathbf{z}, t_j \in [t_i - \Delta t, t_i), p_j = q\}$$

Histograms of averaged time surfaces

Averaged histogram

Fig.5 Overview of the proposed architecture. (a)Cells C; (b)Local memory time surface computation

Algorithm

Algorithm 1 HATS with shared memory units

- 1: Input: Events $\mathcal{E} = \{e_i\}_{i=1}^{I}$ Parameters: $\rho, \Delta t, \tau, K$
- 2: Output: *HATS* representation $\mathbf{H}(\{e_i\})$
- 3: Initialize: $\mathbf{h}_{\mathcal{C}_l} = \mathbf{0}, \ |\mathcal{C}_l| = 0, \ \mathcal{M}_{\mathcal{C}_l} = \emptyset$, for all l
- 4: for i = 1, ..., I do
- 5: $C_l \leftarrow \text{getCell}(x_i, y_i)$
- 6: $\mathcal{T}_{e_i} \leftarrow \text{computeTimeSurface}(e_i, \mathcal{M}_{\mathcal{C}_l})$

7:
$$\mathbf{h}_{\mathcal{C}_l} \leftarrow \mathbf{h}_{\mathcal{C}_l} + \mathcal{T}_{e_i}$$

8:
$$\mathcal{M}_{\mathcal{C}_l} \leftarrow \mathcal{M}_{\mathcal{C}_l} \cup e_i$$

9: $|\mathcal{C}_l| \leftarrow |\mathcal{C}_l| + 1$

10: return $\mathbf{H} = [\mathbf{h}_{\mathcal{C}_1} / |\mathcal{C}_1|, \dots, \mathbf{h}_{\mathcal{C}_L} / |\mathcal{C}_L|]^{\mathsf{T}}$

Tab.2 The algorithm of histograms average time-surfaces

4 Experiments

Classification accuracies

database

Table 1 Compared methods for database

	N-MNIST	N-Caltech101	MNIST-DVS	CIFAR10-DVS
H-First [50]	0.712	0.054	0.595	0.077
HOTS [30]	0.808	0.210	0.803	0.271
Gabor-SNN	0.837	0.196	0.824	0.245
HATS (this work)	0.991	0.642	0.984	0.524
Phased LSTM [46]	0.973	-	-	-
Deep SNN [33]	0.987	-	-	-

Table 2 Complexity analysis for N-CARS

N-CARS	Average Comp.	Kev/s
	Time per Sample (ms)	
HOTS [30]	157.57	25.68
Gabor-SNN	285.95	14.15
HATS (this work)	7.28	555.74

5 Outlook

- **1** Decreasing **complexity**, rather than based on single spike?
- **2 Local feature** representations?
- **3 End-to-end architecture** used in spatial-temporal spike stream?

Overview

- Event-based sensors
- Related works
- Image representations
 - Steering prediction, CVPR 2018
- **Time surface representations**
 - HOTS, PAMI 2017
 - HATS, CVPR 2018
- **Feature representations**
 - Bag of Events, TNNLS 2017
- End-to-end SNN
 - **STDP, TNNLS 2014**
- **Discussion**
 - Better input representations for CNN
 - Event-based sensors future

Bag of events: an efficient probability-based feature extraction method for AER image sensors

Xi Peng, Bo Zhao, Rui Yan, Huajin Tang *, Zhang Yi

TNNLS, 2017

1 Introduction

Challenges

A sequence of eventsAsynchronous and sparse

Fig.3 Event camera VS conventional camera.

Contribution

- BOE—feature extraction method based on probability theory
- Online learning algorithm
- Simple and competitive performance

Framework

2 Feature extracting

Bag of events

Segments

LIF neural model

$$\mathcal{K}(t_i) = \exp\left(-\frac{t - t_i}{\tau}\right)$$
$$\mathcal{K}(t) = \sum_{t_i \in [t - 1, t]} \mathcal{K}(t_i)$$

Event-based feature extracting

flow t_i Time spike Threshold Total PSP Time Output t Time

Event

Fig.3 Dynamics of an LIF neuron

Fig.4 The BOE features

3 Experiments

Classification accuracies

MNIST-DVS

Digit 4 -2.33 4.07 2.91 0.00 62.79 1.16 11.63 4.65 1.74 8.7.

Digit 7 -1.86 2.60 0.74 1.49 1.86 2.23 0.37 77.32 1.49 10.0

Digit 8 -4.02 0.40 4.42 0.40 0.40 6.83 1.61 4.02 74.30 3.6 Digit 9 4.88 0.81 0.41 1.22 3.66 1.22 3.66 18.29 2.44

Digit 1

Digit 5

82.16	0.00	5.41	1.62	0.54	1.62	2.16	1.62	1.62	3.24	Digit 0	88.27	0.00	1.68	1.68	1.12	2.23	1.12	1.68	2.23	0.0
0.00	89.71	0.74	0.74	0.00	0.74	2.21	0.00	5.88	0.00	Digit 1	·0.00	94.22	0.58	0.00	1.16	0.58	0.58	0.00	2.31	0.5
6.85	3.65	71.23	1.83	0.46	1.37	4.11	2.74	5.48	2.28	Digit 2	·6.78	3.95	71.75	2.82	0.56	0.00	3.95	5.08	5.08	0.0
·8.11	4.32	7.57	54.59	2.16	5.41	3.24	6.49	4.86	3.24 -	Digit 3	3.06	4.08	6.12	71.94	1.53	4.08	2.55	3.57	1.02	2.0
·2.33	4.07	2.91	0.00	62.79	1.16	11.63	4.65	1.74	8.72 -	· Digit 4	6.63	3.06	6.12	2.04	70.41	0.51	1.53	2.55	1.02	6.1
0.81	0.40	0.40	2.02	1.21	87.50	4.84	0.40	1.61	0.81	. Digit 5	·1.16	1.16	2.31	1.73	0.58	82.66	2.31	0.58	5.20	2.3
4.95	1.77	2.12	0.00	0.71	4.24	85.16	0.35	0.35	0.35	Digit 6	·6.98	0.58	1.16	4.07	0.58	5.23	80.81	0.00	0.58	0.0
·1.86	2.60	0.74	1.49	1.86	2.23	0.37	77.32	1.49	10.04	Digit 7	-2.29	2.86	3.43	0.57	5.71	0.57	1.14	70.86	2.29	10.
·4.02	0.40	4.42	0.40	0.40	6.83	1.61	4.02	74.30	3.61	Digit 8	·2.75	2.75	7.69	8.79	2.20	2.20	0.55	1.65	69.23	2.2
4.88	0.81	0.41	1.22	3.66	1.22	3.66	18.29	2.44	63.41	Digit 9	12,36	1.69	1.12	3.37	5.06	1.69	1.12	14.04	4.49	55.
Dieiro	Dieir	Dieir	Dieir	Dieir	Dieir	Dieir.	Dieir	Disi	Dist	9	Digit	Dieir	Diei	Dieir	Dieir	Digit	Dieir	Dieir	Dieir	2
BOE: 75.09%									Zha	10 E	et.al	[[1]	: 73	.35	%					

Digit 0 85.41 1.08 0.00 3.78 0.00 3.24 3.78 0.54 0.54 1.62 Digit 1 0.00 91.91 0.00 2.21 0.74 0.00 2.21 1.47 1.47 0.00 Digit 2 -8.68 3.65 64.84 6.85 0.91 1.37 3.20 3.20 5.02 2.28 Digit 3 -7.57 2.70 3.24 63.24 0.54 6.49 4.86 1.08 7.03 3.24 Digit 4 -0.57 8.62 1.15 1.72 60.34 2.30 2.30 4.02 3.45 15.52-Digit 5 -3.54 1.97 1.18 9.45 1.57 64.57 4.72 1.97 9.84 1.18 -Digit 6 -11.15 1.74 1.74 6.97 2.09 11.15 58.54 0.35 5.92 0.35 -Digit 7 -4.41 4.41 3.68 2.94 5.88 2.94 0.74 48.90 8.46 17.65-Digit 8 10.76 1.99 5.18 11.95 1.20 6.37 6.37 3.19 49.00 3.98 Digit 9 ·4.71 2.75 3.14 4.71 11.76 3.14 2.35 12.55 6.67 48.24 Diel Disto Dieli Dieli Dieli Chen et.al[2]: 61.23%

Tab. 1 Compared methods for MNIST-DVS database Digit 0 82.16 0.00 5.41 1.62 0.54 1.62 2.16 1.62 1.62 3.2

Complexity analysis

Feature extraction and classification

Algorithms		Featu	re Extractio	on		Classification				
Aigonums	training(s)	testing(s)	total(s)	fps	tpe(s)	training(s)	testing(s)	total(s)	fps	tpe(s)
BOE	27.89	27.28	55.17	402.65	8.28E-06	3.63	0.12	3.75	5926.63	5.62E-07
Zhao's [18]	8601.10	955.68	9556.78	1.87	1.17E-03	204.11	26.93	231.05	77.23	2.82E-05
Chen's [15]	1208.38	134.26	1342.64	16.69	2.00E-04	-	7691.26	7691.26	2.91	1.14E-03

Tab. 2 Compared methods for complexity analysis

[1] Feed-forward categorization on AER motion events using cortex-like features in a spiking neural network, Bo Zhao et.al, TNNLS 2015.

[2] Efficient feedforward categorization of objects and human postures with address-event image sensors, Shoushun Chen et.al, PAMI, 2012.

4 Outlook

1 Temporal information can be feature representations?

- **2 Local feature** representations?
- **3 End-to-end SNN** used in spatial-temporal spike stream?

Overview

- Introduction
 - Event-based sensors
 - Related works
- Image representations
 - Steering prediction, CVPR 2018
- **Time surface representations**
 - HOTS, PAMI 2017
 - HATS, CVPR 2018
- **Feature representations**
 - Bag of Events, TNNLS 2017
- End-to-end SNN
 - STDP, TNNLS 2014
 - Discussion
 - Better input representations for CNN
 - Event-based sensors future

Unsupervised learning of digit recognition using spike-timing-dependent plasticity

Peter U. Diehl *, and Matthew Cook

TNNLS, 2014

1 Introduction

□ Leaky-integrate-and-fire, LIF

Firing model

$$\tau_m \frac{du}{dt} = -u(t) + RI(t)$$

Fig.1 Leaky-integrate-and-fire model

1 Introduction

Spike-timing dependent plasticity, STDP

Synapse plasticity

$$\frac{dx_{pre}}{dt} = -\frac{x_{pre}}{\tau_{pre}}$$
$$\frac{dx_{post}}{dt} = -\frac{x_{post}}{\tau_{post}}$$

$$\Delta w = \eta O(x_{pre}, x_{post})$$

$$\Delta w = \sum_{t_{pre}} \sum_{t_{post}} f(t_{post} - t_{pre})$$

Fig.2 e-STDP learning function

Network architecture П **STDP** called unsupervised learning **One to one connections** How to use labels hibitory Neurons **Possion-spike with** Lateral Inlibition firing rates Excitatory Neurons **Connected all except one** Input Fig.3 Two layers network

STDP learning rule

Neuron and synapse model

LIF model, the membrane voltage V^[1]

$$\tau \frac{dV}{dt} = (E_{rest} - V) + g_e(E_{ext} - V) + g_i(E_{inh} - V)$$

Learning rule

Weight change

 $\Delta w = \eta \big(x_{pre} - x_{tar} \big) (w_{max} - w)^{\mu}$

Train

Assigned excitatory neurons

Fig.4 2D receptive fields

3 Experiments

Results

Event-based data?

Architecture	Preprocessing	Training-type	(Un-)supervised	Learning-rule	Performance
Dendritic neurons (Hussain et al., 2014)	Thresholding	Rate-based	Supervised	Morphology learning	90.3%
Spiking RBM (Merolla et al., 2011)	None	Rate-based	Supervised	Contrastive divergence, linear classifier	89.0%
Spiking RBM (O'Connor et al., 2013)	Enhanced training set to 120,000 examples	Rate-based	Supervised	Contrastive divergence	94.1%
Spiking convolutional neural network (Diehl et al., 2015)	None	Rate-based	Supervised	Backpropagation	99.1%
Spiking RBM (Neftci et al., 2013)	Thresholding	Rate-based	Supervised	Contrastive divergence	92.6%
Spiking RBM (Neftci et al., 2013)	Thresholding	Spike-based	Supervised	Contrastive divergence	91.9%
Spiking convolutional neural network (Zhao et al., 2014)	Scaling, orientation detection, thresholding	Spike-based	Supervised	Tempotron rule	91.3%
Two layer network (Brader et al., 2007)	Edge-detection	Spike-based	Supervised	STDP with calcium variable	96.5%
Multi-layer hierarchical network (Beyeler et al., 2013)	Orientation-detection	Spike-based	Supervised	STDP with calcium variable	91.6%
Two layer network (Querlioz et al., 2013)	None	Spike-based	Unsupervised	Rectangular STDP	93.5%
Two layer network (this paper)	None	Spike-based	Unsupervised	Exponential STDP	<mark>95.0%</mark>

Tab.1 Classification accuracy of SNN on MNIST

4 Extended works

Experiments

DVS-MNIST dataset

Fig.5 N-MNIST dataset

Fig.6 event streams

[3] Unsupervised learning of digit recognition using spike-timing-dependent plasticity, Peter U. Diehl et. al, *TNNLS* 2014.
[4] HATS: Histograms of averaged time surfaces for robust event-based object classification, Amos Sironi, et. al, *CVPR* 2018.

5 Outlook

- □ **1 No Brian2 , No Nest Simulation platform**, but in deep Architecture, such as Pytorch ^[5]?
- □ 2 End-to-end SNN can be applied in complex event-based vision tasks?
- **3** Sparse lattice networks ^[6] used in spatial-temporal spike stream?

Representations	Disadvantages	Advantages
Image	Lack of temporal information	Deep learning
Time surface	Complexity & Local feature	Temporal information
Feature	Multi-steps	Complex vision tasks
End-to-end SNNs	Neural model + Framework	Temporal information
End-to-end CNNs	Lack of datasets Waiting	Complex vision tasks

Tab.3 Representations for event-based camera data

Overview

- Introduction
 - Event-based sensors
 - Related works
- Image representations
 - Steering prediction, CVPR 2018
- **Time surface representations**
 - HOTS, PAMI 2017
 - HATS, CVPR 2018
- Feature representations
 - Bag of Events, TNNLS 2017
- End-to-end SNN
 - **STDP, TNNLS 2014**

Discussion

- Better input representations for CNN
- Event-based sensors future

Discussion

Better input representations for CNN

- Point process, such as **PointNet**^[1]
- Lack of training dataset

□ The future of event-based cameras

- Sparse and asynchronous events
- Point process

Q&A?

Thanks !