

Recent advance in event-based vision : from deep learning perspective

Jianing Li

Spiking Computing Group

lijianing@pku.edu.cn

May 11, 2019

Overview

Introduction

- Event-based vision in CVPR 2019
- Questions

Related works

- Time surface representations
 - Transformed images

End-to-end learning

- Events-to-video, CVPR 2019
- Cv3dconv, IEEE Access 2019
- EventNet, CVPR 2019

Discussion

- Better input representations for event data
- Event-based vision in the future

Overview

Introduction

П

- Event-based vision in CVPR 2019
- Questions

Related works

- Time surface representations
 - Transformed images
- End-to-end learning
 - Events-to-video, CVPR 2019
 - Cv3dconv, IEEE Access 2019
 - EventNet, CVPR 2019

Discussion

- Better input representations for event data
- Event-based vision in the future

Event-based vision workshops in CVPR 2019

Organizers:

Davide Scaramuzza UZH

Guillermo Gallego UZH

Kostas Daniilidis UPenn

Event-based vision workshops in CVPR 2019

Call for papers and demos

- Event-based / neuromorphic vision.
- Algorithm: Visual odometry, SLAM, 3D reconstruction, Optical flow estimation, <u>image intensity reconstruction</u>, recognition, stereo depth reconstruction, feature/ <u>object detection</u> and tracking, calibration, sensor fusion.
- Model based, embedded or learning approaches.
- Event-based signal processing, control, bandwidth control.
- Event-based active vision.
- Event-based camera datasets and/or simulators.
- Applications in: robotics(navigation, manipulation, drones...), automotive, IoT, AR/VR, space, inspection, surveillance, crowd counting, physics.
- Biologically-inspired vision and smart cameras
- Novel hardware(cameras, neuromorphic processors, etc.) and/or software platforms.
- New trends and challenges in event-based and/or biologically-inspired vision.

Event-based vision workshops in CVPR 2019

Invited speakers

NUS

KTH

Piotr Dudek Univ. Manchester

Andrew Davision ICL

ETH

ETH

Cornelia Fermuller Yulia Sandamirskaya Univ.Maryland

Chiara Bartolozzi Italiano di Tecnlogia

Margarita Chli Robert Mahony ETH ANU

Invited companies

ATIS, France

DVS(640*480), SK

Loihi, USA

iniJation

Insightness, DVS, Switzerland

DVS, Switzerland

DVS, China

Event-based vision in CVPR 2019

Paper list (1+8)

- Bring a blurry frame alive at high frame-rate with an event camera, Liyuan Pan et. al, *ANU*. (oral)
- Unsupervised event-based learning of optical flow, depth and ego-motion, Alex Z.
 Zhu et al, *University of Penn*.
- Events-to-video: bringing modern computer vision to event cameras, Henri Rebecq et al, *UZH & ETH*.
- EventNet: Asynchronous recursive event processing, Yusuke Sekikawa et al, *Denso IT Laboratory*.
- EV-Gait: Event-based robust gait recognition using dynamic vision sensors, Yanxiang Wang et al, *HEU*, *China*.
- Event-based high dynamic range image and very high frame rate video generation using conditional generation adversarial networks, S. M. Mostafavi et al, *GIST*.
- Speed invariant time surface for learning to detect corner points with event-based cameras, J. Manderscheid et al, *PROPHESEE*.
- Focus loss functions for event-based vision, Guilleromo Gallego et at, *UZH & ETH*.
- Event cameras, contrast maximization and reward functions: an analysis, T. N. Stoffregen et al, *Monash University*.

Papers in CVPR

Event-based vision

- Research papers in recent years
- Related topics in CVPR

Tab.1 Papers of event-based vision in recent years

Tab.2 Related topics in CVPR

We ask the questions

- **1** What are **new trends** and **challenges** in event-based vision?
- **2** How will **spatial-temporal data** meet **deep learning**?
- **3** Do you believe that **System theory** exists in **event-based vision**?

Overview

Introduction

П

- Event-based vision in CVPR 2019
- Questions

Related works

- Time surface representations
 - Transformed images
- End-to-end learning
 - Events-to-video, CVPR 2019
 - Cv3dconv, IEEE Access 2019
 - EventNet, CVPR 2019

Discussion

- Better input representations for event data
- Event-based vision in the future

Time surface representations

Time surface ^[1]

Event streams

$$ev_i = [\mathbf{x_i}, t_i, p_i]^T, \quad i \in \mathbb{N}$$

Time context

$$\mathcal{T}_{i}(\mathbf{u}, p) = \max_{j \leq i} \left\{ t_{j} \, | \, \mathbf{x}_{\mathbf{j}} = (\mathbf{x}_{\mathbf{i}} + \mathbf{u}), \, p_{j} = p \right\}$$

Computing time surface

$$\mathcal{S}_i(\mathbf{u}, p) = e^{-(t_i - \mathcal{T}_i(\mathbf{u}, p))/\tau}.$$

Fig.1 Time surface from the spatiotemporal events

Time surface representations

Local memory time surfaces ^[2]

Time window

$$\mathcal{T}_{e_i}(\mathbf{z}, q) = \begin{cases} \sum_{e_j \in \mathcal{N}_{(\mathbf{z}, q)}(e_i)} e^{-\frac{t_i - t_j}{\tau}} & \text{if } p_i = q \\ 0 & \text{otherwise,} \end{cases}$$

$$\mathcal{N}_{(\mathbf{z},q)}(e_i) = \{e_j : \mathbf{x}_j = \mathbf{x}_i + \mathbf{z}, t_j \in [t_i - \Delta t, t_i), p_j = q\}$$

Fig.2 Time surface computation around an event, in presence of noise. (a)time surfaces; (b)local memory time surfaces; (c)HATS

Transformed images

Rate-based images ^[3]

Integrating time window

Fig.3 Event-to-frame conversion by rate-based strategy

- □ Feature images ^[4]
 - Brightness increment

[3] Event-based vision meets deep learning on steering prediction for self-driving cars. Ana I. Maqueda et.al . *CVPR* 2018.[4] Asynchronous, photometric feature tracking using events and frames, Daniel Gehrig et al, ECCV 2018.

Overview

Introduction

П

- Event-based vision in CVPR 2019
- Questions

Related works

- Time surface representations
 - Transformed images

End-to-end learning

- Events-to-video, CVPR 2019
- Cv3dconv, IEEE Access 2019
- EventNet, CVPR 2019

Discussion

- Better input representations for event data
- Event-based vision in the future

Events-to-Video: bringing modern computer vision to event cameras

Henri, Rebecq, Rene Ranftl, Vladlen Koltun, Davide Scaramuzza *

CVPR, 2019

1 Introduction

Motivation

- Challenging illumination conditions
- Fast motion

Contributions

- Recurrent network architecture to reconstruct a video from spatialtemporal events
- Quantized assessment by transformed application
- Providing a simulated and real events dataset

Fig.4 Converting spatial-temporal steam into high-quality video.

2 Problem statement

Events

Asynchronous spatial-temporal point

 $e_i = < x_i, y_i, t_i, p_i >$

 $y_i = y_m$

Event representation
 Spatial-temporal voxel grid^[5]

Fig.5 Comparison of conventional camera and event camera.

$$t_i^* \triangleq \frac{B-1}{\Delta T}(t_i - t_0)$$

 $E(x_{l}, y_{m}, t_{n}) = \sum_{x_{i}=x_{l}} p_{i} \max(0, 1 - |t_{n} - t_{i}^{*}|)$

□ Architecture

Recurrent network

Fig.6 Each window is converted into E_K and passed through the network together with the last K reconstructed images to a new image \hat{I}_k .

Training strategy

- Dataset– event simulator ESIM ^[6]
- Loss functions

$$\mathcal{L}_{K} = \sum_{L=0}^{L} d_{L}(\hat{I}_{k-l}, I_{k-l})$$

[6] ESIM: an open event camera simulator. Henri Rebecq et.al . CoRL 2018.

3 Results

Representative results

Event-camera dataset and simulator ^[7]

Fig.7 representative image reconstruction for event cameras.

[7] The event-camera dataset and simulator: event-based data for pose estimation, visual odometry, and SLAM. Elias Mueggler et al, IJRR, 2017. [8] Continuous-time intensity estimation using event cameras, Cedric Scheerlinck et al, ACCV 2018.

[9] Real-time intensity-image reconstruction for event cameras using manifold regulation. Gottfried Munda et.al. IJCV 2018.

3 Results

Performance estimation

MSE, SSIM and LPIPS

		MSE			SSIM			LPIPS		
Dataset	HF	MR	Ours	HF	MR	Ours	HF	MR	Ours	
dynamic_6dof	0.10	0.11	0.08	0.39	0.44	0.50	0.53	0.53	0.43	
boxes_6dof	0.09	0.07	0.04	0.45	0.47	0.63	0.51	0.54	0.36	
poster_6dof	0.06	0.05	0.04	0.52	0.55	0.68	0.44	0.50	0.32	
shapes_6dof	0.11	0.14	0.10	0.34	0.43	0.44	0.63	0.64	0.53	
office_zigzag	0.09	0.06	0.05	0.36	0.43	0.50	0.54	0.55	0.44	
slider_depth	0.08	0.08	0.06	0.48	0.51	0.61	0.50	0.55	0.42	
calibration	0.07	0.06	0.04	0.41	0.41	0.52	0.55	0.57	0.47	
Mean	0.09	0.08	0.06	0.42	0.46	0.56	0.53	0.55	0.42	

Tab.3 Comparison to state-of-the-art image reconstruction methods on the Event Camera Dataset [7].

4 Outlook

1 Will CeleX overthrow image reconstruction for event cameras?

- □ 2 How to further **exploit spatial-temporal information** for event data?
- **3** Is image reconstruction better for vision tasks?

Constant velocity 3D convolution

Yusuke Sekikawa, Kohta Ishikawa, and Hideo Saito *

IEEE Access, 2019

1 Introduction

Motivation

- Exploiting spatial-temporal information
- Taking advantages of event cameras
- Fast computing

Contributions

- cv3dconv, where a 3D kernel is represented as a 2D spatial kernel and constant velocity kernel
- Recursive convolution to fast computing
- Significant improvement over the state-of-the-art architectures

Fig.8 Steering angle performance on frames and event camera^[10].

Architecture 3dconv cv3dconv cv3dconv ()212 $z = X \circledast \omega_{\xi} = X \circledast \omega_{s} \circledast v_{\xi}$ cv3dconv (sparse) $[x_i, y_i, t_i, p_i]$ $v_{\mathcal{E}}$ Sparse spatiotemporal event Local motion Spatial modeling Output (ego motion) data extraction $\tau \approx 256$ cv3dconv vpòol 2D CNN (ResNet50) time

Fig.9 Overview of DNN architecture. The cv3dconv captures local spatial-temporal features from sparse spatiotemporal inputs, and then the subsequent 2D-CNN layers (ResNet 50) model the global spatial correlation of the extracted features.

Constant velocity 3D convolution

Constant velocity approximation

$$X \circledast v_{\zeta} = \sum_{i=0}^{\tau-1} X (x - i\xi_x, y - i\xi_y, t - i)$$

Sampling strategy

sampling; (b) sampling only along $\xi_x - \xi_y$ axes.

Computing strategy

Recursive convolution with V_{ξ}

$$\begin{aligned} z(x, y, t+1) &= z \Big(x - \xi_x, y - \xi_y, t \Big) + \epsilon_{new} - \epsilon_{old} \\ \epsilon_{new} &= X(x, y, t+1) \circledast w_s \circledast v_{\xi}(\cdot, \cdot, 1) \\ \epsilon_{old} &= X(x, y, t-\tau) \circledast w_s \circledast v_{\xi}(\cdot, \cdot, \xi) \end{aligned}$$

Fourier Convolution with V_ξ

$$z(x, y, t) = \left[\mathcal{F}\mathcal{T}_{(1,2)}^{-1}\hat{X}(\hat{x}, \hat{y}, \hat{x}\xi_x + \hat{y}\xi_y)\right] \circledast w_s$$
$$\hat{X} = \mathcal{F}\mathcal{T}_{(3)}\mathcal{F}\mathcal{T}_{(1,2)}X(\cdot, \cdot, t - \tau + 1; t)$$

Sparse event-wise convolution

$$X(\cdot,\cdot,t) \circledast w_s = \sum_i S(x_i, w_s)$$

Detailed framework

Fig.11 The detailed DNN frameworks.

3 Results

Experimental settings

Architecture Name	First two layers	Filters size of first layer	ν	Input
2D-ResNet(1)	2dconv,relu	$7 \times 7 \times 1 \times 2 \times 64$	-	Histogram
2D-ResNet(2)	2dconv,relu	$7 \times 7 \times 1 \times 4 \times 64$	-	Histogram+Timestamps
NA3DResNet	3dconv,relu	$7\times7\times256\times1\times64$	-	Dense Raw Event
CV3D-ResNet(1)	cv3dconv,vpool	$7\times7\times1\times1\times16$	13^{2}	Sparse Raw Event
CV3D-ResNet(2)	cv3dconv,vpool	$7 \times 7 \times 1 \times 1 \times 64$	13×2	Sparse Raw Event

Tab.4 Summary of each architectures.

Performance evaluation

	Outdoor Night 3				Outdoor Night 3 + noise			
Architecture Name	EVA		RMSE		EVA		RMSE	
	$\Delta \theta$	ΔL	$\Delta \theta$	ΔL	$\Delta \theta$	ΔL	$\Delta \theta$	ΔL
2D-ResNet(1)	0.709	0.801	3.503	1.255	-0.032	0.024	8.542	5.595
2D-ResNet(2)	0.750	0.841	3.212	1.201	-0.445	0.010	14.473	4.415
NA3D-ResNet	0.952	0.944	2.113	1.173	0.434	0.423	5.983	2.203
CV3D-ResNet(1)	0.955	0.948	1.55 3	0.860	0.66 1	0.542	3 .934	2.013
CV3D-ResNet(2)	0.950	0.939	2.198	1.216	0.489	0.477	4.992	2.202

Tab.5 Performance evaluation based on DDD17 dataset ^[11].

3 Results

Computational complexity Computing efficiency

				Time	e [s]
		Number of sum-of-product operations	Ratio	CPU	GPU
	3dconv	$TWH\nu(k_L^2 au)$	1	1715.6	170.7
nv	Fourier-dense	$TWH(k_S^2 + \tau \log \tau + (\nu + 1)\log(WH))$	17×10^3	185.7	11.7
lcol	Fourier-sparse	$TWH(\alpha k_S^2 + \tau \log \tau + (\nu + 1)\log(WH))$	19×10^3	183.2	—
v3d	sequential-dense	$TWH(k_S^2 + 4\nu)$	48×10^3	103.4	5.54
Ċ	sequential-sparse	$TWH(\alpha k_S^2 + 4\nu)$	$69 imes10^3$	99.3	_

Tab.6 Comparison with computational efficiency.

Parameters memory

	Nun	nber of parameters	Error		
	conv	fc	Total	Angle [deg]	Velocity [pix/ τ]
3dconv	$101^2 \times 32 \times 32$	32×3	10.45M	6.91	1.93
cv3dconv	$31^2 \times 1 \times 32$	$(13^2 \times 32) \times 3$	0.048M	3.78	1.03
cv3dconv + vpool	$31^2 \times 1 \times 32$	$(13^2 + 32) \times 3$	0.0 31 M	4.09	0.76

Tab.7 Comparison with parameters memory.

4 Outlook

- □ **1** How to further **exploit spatial-temporal information** for event data?
- 2 Could you design an EventNet, instead of 3D convolution strategy?

EventNet: asynchronous recursive event processing

Yusuke Sekikawa, Kohta Ishikawa, and Hideo Saito *

CVPR, 2019

1 Introduction

Motivation

- Further exploit spatial-temporal data
- End-to-end learning for event streams

Contributions

- Recursive architecture using a novel temporal coding and aggregation scheme
- A lookup table (LUP) instead of multilayer-perceptron (MLP) removing most of the sum-of-product operations
- End-to-end learning by event-wise processing

Fig.12 Snapshot from the MVSEC^[12].

П

```
Architecture

    PointNet <sup>[13]</sup>
```

Fixed frame rate Fixed frame rate 30 fps 30 fps Frame-based synchronous architecture (CNN) **CNN** Multiple Frames Frame-driven, Slow (Dense/Synchronous) Variable event rate demand rate 000 142 Event-based a asynchronous architecture (EventNet) t-code table (mlp) Lightweightmlp c-max **EventNet** global featu Single Event Event-driven On-demand (Sparse/Asynchronous)

Fig.13 Overview of asynchronous event-based pipeline of EventNet in contrast to conventional frame-based CNN.

Framework

End-to-end learning

Fig.14 The framework of EventNet is shown in comparison with PointNet.

Strategies

Symmetric function

 $y_i = f(e_j) \approx g(\max(h(e_{j-n(j)+1}), \dots, h(e_j)))$

Where $h: \mathbb{R}^4 \to \mathbb{R}^k$, max: $\underbrace{\mathbb{R}^K \times \cdots \times \mathbb{R}^k}_{n(j)} \to \mathbb{R}^K$, and $g: \mathbb{R}^K \to \mathbb{R}$. They approximate h and g using an MLP.

Temporal coding

 $h(e_i) \approx c(\mathbf{h}(e_i^-), \Delta t_{j,i}), \text{ where } e^- \coloneqq (x, y, p)$ $f(e_i) \approx g(\max(c(z_{i-n(i)+1}, \Delta t_{i,i-n(i)+1}), \dots, c(z_i, 0)))$

Where $z_i = h(e_i^-) \in \mathbb{C}^K$. Using this formulation, we need to compute *h* only once for each observed event, however, *c* and *max* need to be computed for all events in time window every time a new event arrives.

- **Strategies**
 - Recursive processing

$$\begin{aligned} a_{j,i} &= c \Big(z_i, \Delta t_{j,i} \Big) = \left[|z_i| - \frac{\Delta t_{j,i}}{\tau} \right]^+ exp(-i\frac{2\pi\Delta t_{j,i}}{\tau}) \\ \max \Big(c \Big(z_{j-n(j)+1}, \Delta t_{j,j-n(j)+1} \Big), \dots, c \Big(z_j, 0 \Big) \Big) &= \max(c(s_j, \delta_{t_j}, h(e_{j+1}))) \\ f(e_{j+1}) &\approx g(\max(c(s_j, \delta_{t_j}), \dots, h(e_{j+1}))) \\ s_j &= \max(c \Big(s_{(j-1)}, \delta t_{j-1} \Big), h(e_{j+1})) \end{aligned}$$

Fig.15 Recursive architecture for spatial-temporal events.

3 Results

Quantitative evaluation

ETHTED+ [7]

MVSEC^[12]

			ETHTED	+	MVSEC	Real-time	
		Semantic segmentation		Object-motion	Ego-motion	processing at 1 MEDS	
		GA [%]	mIoU [%]	error [pix/ τ]	error [deg/sec]	processing at 1 WEF5	
Poir	ntNet	98.9	97.4(0.13)	3.14(0.08)	4.55	NO	
EventNet		99.2	97.5(0.22)	3.11(0.28)	4.29	YES	
	w/o TD	99.4	98.8 (0.16)	3.08 (0.32)		NO	
Ablation	w/o TR	98.1	97.9(0.11)	3.74(0.06)		YES	
	w/o ALL	98.3	97.1(0.25)	4.14(0.32)		NO	

Tab.8 Quantitative evaluation using ETHTED+ and MVSEC.

Computational complexity

	#input mlp1	#input max	mlp1/2	max pool(+t-code)	total	mlp3	mlp4
PointNet	n(j)	n(j)	936.9×10^3	16.47×10^3	953.3×10^3	0.58×10 ³	0.59×10^3
EventNet	1	2	0.65(29.27)	0.36	1.01	0.61×10^3	0.61×10^{3}

Tab.9 Computational times(us) for processing a single event with EventNet and PointNet.

[7] The event-camera dataset and simulator: event-based data for pose estimation, visual odometry, and SLAM. Elias Mueggler et al, IJRR, 2017.
[12] The multivehicle stereo event camera dataset: an event camera dataset for 3d perception. Alex Z. Zhu et.al. *IEEE Robotics and Automation Letters*, 2018.

4 Outlook

- **1** How to further design **local feature** representations?
- **2** How to transform other strategies for point cloud to event-based data?
- **3** Do you believe that **System theory** exists in **event-based vision**?

Summary

Representations	Disadvantages	Advantages
Image	Lack of temporal information	Deep learning
Time surface	Complexity & Local feature	Spatial-temporal
Feature	Multi-steps	Complex vision tasks
End-to-end CNNs	Lack of datasets & loss function	Complex vision tasks
End-to-end SNNs	Complex vision tasks?	Temporal information

Tab.10 Representations for spatial-temporal spikes from event cameras

Overview

Introduction

П

П

- Event-based vision in CVPR 2019
- Questions
- Related works

- Time surface representations
 - Transformed images
- End-to-end learning
 - Events-to-video, CVPR 2019
 - Cv3dconv, IEEE Access 2019
 - EventNet, CVPR 2019

Discussion

- Better input representations for event data
- Event-based vision in the future

Discussion

Better input representations for event data

- Spiking neural network ^[14]
- Point process theory + machine learning ^[15]

Event-based vision in the future

- Event-based cameras
- Sparse and asynchronous **spatial-temporal point processes**

Fig.16 Asynchronous spatial-temporal spikes from event cameras.

[14] SLAYER: spike layer error reassignment in time. Sumit Bam Shrestha et al, NIPS, 2018.[15] Learning time series associated event sequences with recurrent point process networks. Shuai Xiao et.al. *TNNLS*, 2019.

Q&A?

Thanks !