

Recent advances in neuromorphic vision sensors: A survey

Jianing Li

lijianing@pku.edu.cn https://jianing-li.github.io/

Multimedia Learning Group School of EE & CS, Peking University

Dec.18th , 2019

Overview

Introduction

- Conventional camera
- Biological visual sensing system
- Neuromorphic vision milestones
- Neuromorphic vision Sensors

Event-based signal processing

- Spatial-temporal filter
- Spike metric
- Spike coding

Feature representations (Applications)

- Rate-based image
- Hand-crafted feature
- End-to-end deep network
- Spiking neural network

Discussion

- Better input representations for event data
- Event-based vision in the future

Overview

Introduction

- Conventional camera
- Biological visual sensing system
- Neuromorphic vision milestones
- Neuromorphic vision Sensors

Event-based signal processing

- Spatial-temporal filter
- Spike metric
- Spike coding
- Feature representations (Applications)
 - Rate-based image
 - Hand-crafted feature
 - End-to-end deep network
 - Spiking neural network
- Discussion
 - Better input representations for event data
 - **Event-based vision in the future**

Conventional camera

Disadvantage of conventional camera

High-sp

- Over-sampling, data redundancy
- Under-sampling, motion blur
- Low dynamic range
- High power

motion

Biological visual sensing system

- Retina sampling
 - Three layers structures
 - Fovea visual texture
 - Peripheral high time resolution

Neuromorphic vision milestones

影 北京大学

Neuromorphic sampling

- **Differential sampling model**
 - Address event representation (AER)
 - Illumination change

 $\Delta L \doteq \ln L(u,t) - \ln L(u,t - \Delta t) = p\theta$

DVS, DAVIS, ATIS, CeleX

Dynamic vision sensor (DVS) – Differential sampling

□ Integral sampling model

Leaky integrate and fire (LIF) model

$$A(t) = \int_0^t I(t)dt \ge \varphi$$

Octopus retina, FSM

Fovea-like sampling model (FSM) – Integral sampling

🛞 北京大学

- Asynchronous time-based image sensor (ATIS)
 - DVS: change detector
 - Time-based: greyscale events

- Dynamic and active pixel vision sensor (DAVIS)
 - **DVS**
 - APS : 50 Hz texture image
 - Two stream: asynchronous

- CeleX NTU
 - **DVS**
 - Voltage -> grayscale
 - Optical flow

Comparison between different commercialized neuromorphic vision sensors

Sensors	DAVIS128	ATIS	DAVIS346	DVS-G2	CeleX-V	FSM
Supplier	iniVation	Prophesee	iniVation	Samsung	CelePixel	<u>PKU</u>
Year	2008	2011	2017	2017	2018	<u>2018</u>
Resolution	128×128	304 ×240	346×260	640×480	1280×800	400×250
Sampling (Hz)	1×10^{6}	1×10^{6}	1.2×10^{7}	3×10 ⁹	1.6 ×10 ⁸	4×10^{4}
DR (dB)	120	143	120	90	120	70
Power (mW)	23	50-175	10-170	27-50	390-470	370
Chip Size (mm ²)	6.3×6	9.9×8.2	8×6	8×5.8	14.3×11.6	10×6
Pixel Size (µm²)	40×40	30×30	18.5×18.5	9×9	9.8×9.8	20×20
Fill factor	8.1%	20%	22%	100%	9%	13.75%
Latency (μ s)	12	3	20	65-410	1	25
Voltage (V)	3.3	1.8&3.3	1.8&3.3	1.2&3.3	1.2&3.3	1.5&3.3
Texture image	No	gray	color	No	gray	gray

Machine vision

- High speed
- Challenging illumination

Autonomaous driving

Drone

iCub robot

Research institutes on neuromorphic

Related works

- Paper numbers
- Papers in CVPR
- Research fields

Overview

Introduction

- Conventional camera
- Biological visual sensing system
- Neuromorphic vision milestones
- Neuromorphic vision Sensors

Event-based signal processing

- Spatial-temporal filter
- Spike metric
- Spike coding
- **Feature representations (Applications)**
 - Rate-based image
 - Hand-crafted feature
 - End-to-end deep network
 - Spiking neural network
- Discussion
 - Better input representations for event data
 - **Event-based vision in the future**

北京大学

Event-based signal processing

[1] O(N)-Sapce spatiotemporal filter for reducing noise in neuromorphic vision sensors. IEEE Transactions on Emerging Topics in Computing, 2018

Event-based signal processing

Spike metric --- the basis of event-based signal processing

- Spike coding
 - **Distortion measurement**
 - Motion estimation
- Neuroscience
 - Retinal prostheses
 - **Multi-neuron synchrony**
- Event-based vision
 - Retrieval and tracking
 - Matching in 3D stereo
 - **Loss function for ANN or SNN**

Learning a neural response metric for retinal prosthesis, Nishal P. Shah et al., *ICLR*, 2018.
Focus is all you need: loss functions for event-based vision, Guillermo Gallego et al., *CVPR* 2019.

Event-based signal processing

Spike coding

- Prediction framework
 - Intra-cube
 - Inter-cube

Siwei Dong et al. Spike Coding for Dynamic Vision Sensors in Intelligent Driving, *IEEE Internet of Things Journal (IOT)*, 2018.
Yihua Fu et al. Spike Coding: Towards Lossy Compression for Dynamic Vision Sensor, *Data Compression Conference (DCC)*, 2019.

Overview

Introduction

- Conventional camera
- Biological visual sensing system
- Neuromorphic vision milestones
- Neuromorphic vision Sensors
- Event-based signal processing
 - Spatial-temporal filter
 - Spike metric
 - Spike coding

Feature representations (Applications)

- Rate-based image
- Hand-crafted feature
- End-to-end deep network
- Spiking neural network

Discussion

- Better input representations for event data
- **Event-based vision in the future**

Rate-based image

Jianing Li, Siwei Dong, Zhaofei Yu,* Yonghong Tian, Tiejun Huang. Event-based vision enhanced: A joint detection framework in autonomous driving. *ICME* 2019.

Hand-crafted feature

Learning feature

3D convolution

Event clouds

Graph-based

ルミナる

Feature representation for event streams

Spiking neural network

Comparison between different recognition methods on publication datasets

Representations	Methods	N-MNIST	MNIST- DVS	N-Caltech	CIFAR10- DVS	N-CARS	DVS- Gesture	ASL-DVS
Rate-based image	VGG_19	0.972	0.983	0.549	0.334	0.728	-	0.806
	ResNet_5 0	0.984	0.982	0.637	0.558	0.903	-	0.886
	LSTM	0.837	0.824	0.196	0.245	0.789	0.769	0.621
Hand-crafted feature	HOTS	0.808	0.803	0.210	0.271	0.624	0.785	0.656
	HATS	0.991	0.984	0.642	0.524	0.902	0.933	0.871
End-to-end deep network	PATs	-	-	-	-	-	0.974	-
	RG-CNNs	0.990	0.986	0.657	0.540	0.914	0.938	0.901
Spiking neural network	H-Frist	0.712	0.595	0.054	0.077	0.561	0.529	0.479
	Direct- SNN	0.995	-	-	0.605	-	-	-
	SLAYER	0.992	0.956	0.598	0.532	0.907	0.936	0.869

Overview

Introduction

- Conventional camera
- Biological visual sensing system
- Neuromorphic vision milestones
- Neuromorphic vision Sensors
- Event-based signal processing
 - Spatial-temporal filter
 - Spike metric
 - Spike coding
- Feature representations (Applications)
 - Rate-based image
 - Hand-crafted feature
 - End-to-end deep network
 - Spiking neural network

Discussion

- **Better input representations for event data**
- Event-based vision in the future

Discussion

□ How to find better representation for event data?

- Learning feature
- **Event clouds**
- Graph-based

Representations	Works	Vision tasks
Learning feature	End-to-end learning of representations for asynchronous event- based data, <i>ICCV</i> 2019	Recognition & optical flow
	DART: Distortion aware retinal transform event-based cameras, TPAMI 2019	Recognition & tracking
Event clouds	Space-time event clouds for gesture recognition : from RGB cameras to event cameras, <i>WACV</i> 2019	recognition
	EventNet : Asynchronous recursive event processing, CVPR 2019	segmentation
	Modeling point clouds with self-attention and Gumbel subset sampling, <i>CVPR</i> 2019	recognition
Graph-based	Graph-based object classification for neuromorphic vision sensing, <i>ICCV</i> 2019	recognition
	Graph based event processing , Imaging and Applied Optics, 2019	Signal processing

Discussion

□ How many challenges are there in neuromorphic vision?

- Large datasets for supervised learning
- Asynchronous spatial-temporal spike metric
- Better representations for spatial-temporal streams
- Spiking neural networks for complex vision
- High computing using neuromorphic chip

Loihi, Intel

TureNorth, IBM

SpiNNaker, UM

Discussion

□ What is the future of neuromorphic vision sensors?

- Memory mechanism using neuromorphic vision sampling
- Multi-spectral sampling using neuromorphic concept
- Multi-sensors fusion, such as DVS, DAS, neuromorphic torch
- Neuroscience & Neuromorphic Engineering

"Listen to the technology, find out what it's telling you"

Carver Mead

THANKS Q&A?

Telluride 2018 Neuromorphic Cognition Engineering Workshop

July 1-20, 2018. Telluride, Colorado, USA

ESP18: Fundamentals of Event Senor Signal Processing

- 1. Can we lay a practical mathematical foundation that allows deriving efficient event-driven signal processing algorithms, analogous to the Z-transform of DSP?
- **2**. Can we find better **noise reduction (NR)** algorithms than existing ones?
- 3. Can we find general methods for adaptively controlling sensor parameters like threshold, bandwidth, and refractory period?

4. Can we find better input representations for event cameras data for CNN?

5. What can we do to combine DVS events with color vision?

Tobi Delbruck ETH

UMPC

Ryad Benosman Garrick Orchard

NUS

Univ.Maryland

Cornelia Fermuller David Mascarenas Yiannis Andreopoulus

LANS

UCL

Francisco Ale Univ, Grenada Uni

Alex Zhu Univ, Penn.

CVPR 2019 Workshops

Organizers:

Davide Scaramuzza UZH

Guillermo Gallego UZH

Kostas Daniilidis UPenn

CVPR 2019 Workshops

Call for papers and demos

- **Event-based** / neuromorphic vision.
- Algorithm: Visual odometry, SLAM, 3D reconstruction, Optical flow estimation, <u>image</u> <u>intensity reconstruction</u>, recognition, stereo depth reconstruction, feature/ <u>object</u> <u>detection</u> and tracking, calibration, sensor fusion.
- Model based, embedded or learning approaches.
- **Event-based signal processing, control, bandwidth control.**
- **Event-based active vision.**
- Event-based camera datasets and/or simulators.
- Applications in: robotics(navigation, manipulation, drones...), automotive, IoT, AR/VR, space, inspection, surveillance, crowd counting, physics.
- Biologically-inspired vision and smart cameras
- **Novel hardware**(cameras, neuromorphic processors, etc.) and/or software platforms.
- New trends and challenges in event-based and/or biologically-inspired vision.

CVPR 2019 Workshops

Invited speakers

Tobi Delbruck ETH

Garrick Orchard NUS

Jorg Conradt Giacomo Indiveri KTH ETH

Piotr Dudek Univ. Manchester

Andrew Davision ICL

Cornelia Fermuller Yulia Sandamirskaya Univ.Maryland ETH

Chiara Bartolozzi Italiano di Tecnlogia

Robert Mahony ANU

Margarita Chli

ETH

ATIS, France

DVS(640*480), SK

Loihi, USA

inivation

Insightness, DVS, Switzerland

DVS, Switzerland

DVS, China

Appendix

- **D** Paper list (1+8) in *CVPR* 2019
 - Bring a blurry frame alive at high frame-rate with an event camera, Liyuan Pan et. al, ANU. (oral)
 - Unsupervised event-based learning of optical flow, depth and ego-motion, Alex Z. Zhu et al, *University of Penn*.
 - Events-to-video: bringing modern computer vision to event cameras, Henri Rebecq et al, *UZH & ETH*.
 - EventNet: Asynchronous recursive event processing, Yusuke Sekikawa et al, *Denso IT Laboratory*.
 - **EV-Gait: Event-based robust gait recognition using dynamic vision sensors,** Yanxiang Wang et al, *HEU, China*.
 - **Event-based high dynamic range image and very high frame rate video generation using conditional generation adversarial networks, S. M. Mostafavi et al**, *GIST*.
 - Speed invariant time surface for learning to detect corner points with event-based cameras, J. Manderscheid et al, *PROPHESEE*.
 - **Focus loss functions for event-based vision**, Guilleromo Gallego et at, *UZH & ETH*.
 - Event cameras, contrast maximization and reward functions: an analysis, T. N. Stoffregen et al, *Monash University*.

Appendix

- **Paper list (1+3) in** *ICCV***2019**
 - Learning an event sequence embedding for dense event-based deep stereo, Stepan Tulyakov et. al, EPFL. (oral)
 - End-to-end learning of representations for asynchronous event-based data, Daniel Gehrig et al, UZH & ETH.
 - **Events-based motion segmentation by motion compensation**, Timo stoffregen et al, *UZH & ETH*.
 - Graph-based object classification for neuromorphic vision sensing, Yin Bin et al, *University of College London*.

Appendix

- **Paper list (1+3) in** *CCF A journal* 2019
 - Towards spike-based machine learning intelligence with neuromorphic computing, *Nature*, Ksushlk Roy et al, *Purdue University*.
 - Optoelectronic resistive random access memory for neuromorphic vision sensors, Nature Nanotechnology, Feichi Zhou et al, The Hong Kong Polytechnic University.
 - Learning sensorimotor control with neuromorphic sensors: towards hyperdimensional active perception, *Science Robotics*, A. Mitrokhin et al, *University of Maryland*.
 - **Event-driven sensing for efficient perception: vision and audition algorithms,** *IEEE Signal Processing Magazine*, Shi-Chii Liu et al, *UZH & ETH*.
 - DART: distribution aware retinal transform for event-based cameras, IEEE Transactions on Pattern Analysis and Machine Intelligence, Bharath Ramesh et al, NUS.
 - Unsupervised learning of a hierarchical spiking neural network for optical flow estimation: from events to global motion perception, IEEE Transactions on Pattern Analysis and Machine Intelligence, Federico Paredes-Valles et al, Delft University of Technology.
 - **EKLT:** Asynchronous photometric feature tracking using events and frames, *International Journal of Computer Vision*, Daniel Gehrig et al, *UZH & ETH*.

